Crypto

History
Source Code: lib/crypto.js
Stability: 2Stable

The node:crypto module provides cryptographic functionality that includes a set of wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify functions.

const { createHmac } = await import('node:crypto');

const secret = 'abcdefg';
const hash = createHmac('sha256', secret)
               .update('I love cupcakes')
               .digest('hex');
console.log(hash);
// Prints:
//   c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e

Determining if crypto support is unavailable

It is possible for Node.js to be built without including support for the node:crypto module. In such cases, attempting to import from crypto or calling require('node:crypto') will result in an error being thrown.

When using CommonJS, the error thrown can be caught using try/catch:

let crypto;
try {
  crypto = require('node:crypto');
} catch (err) {
  console.error('crypto support is disabled!');
}

When using the lexical ESM import keyword, the error can only be caught if a handler for process.on('uncaughtException') is registered before any attempt to load the module is made (using, for instance, a preload module).

When using ESM, if there is a chance that the code may be run on a build of Node.js where crypto support is not enabled, consider using the import() function instead of the lexical import keyword:

let crypto;
try {
  crypto = await import('node:crypto');
} catch (err) {
  console.error('crypto support is disabled!');
}
C

Certificate

History

SPKAC is a Certificate Signing Request mechanism originally implemented by Netscape and was specified formally as part of HTML5's keygen element.

<keygen> is deprecated since HTML 5.2 and new projects should not use this element anymore.

The node:crypto module provides the Certificate class for working with SPKAC data. The most common usage is handling output generated by the HTML5 <keygen> element. Node.js uses OpenSSL's SPKAC implementation internally.

S

Certificate.exportChallenge

Certificate.exportChallenge(spkac, encoding?): Buffer
PropertyTypeDescription
spkac<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the spkac string.
Returns<Buffer>The challenge component of the spkac data structure, which includes a public key and a challenge.
const { Certificate } = await import('node:crypto');
const spkac = getSpkacSomehow();
const challenge = Certificate.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string
S

Certificate.exportPublicKey

Certificate.exportPublicKey(spkac, encoding?): Buffer
PropertyTypeDescription
spkac<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the spkac string.
Returns<Buffer>The public key component of the spkac data structure, which includes a public key and a challenge.
const { Certificate } = await import('node:crypto');
const spkac = getSpkacSomehow();
const publicKey = Certificate.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>
S

Certificate.verifySpkac

Certificate.verifySpkac(spkac, encoding?): boolean
PropertyTypeDescription
spkac<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the spkac string.
Returns<boolean>true if the given spkac data structure is valid, false otherwise.
import { Buffer } from 'node:buffer';
const { Certificate } = await import('node:crypto');

const spkac = getSpkacSomehow();
console.log(Certificate.verifySpkac(Buffer.from(spkac)));
// Prints: true or false

Legacy API

Stability: 0Deprecated

As a legacy interface, it is possible to create new instances of the crypto.Certificate class as illustrated in the examples below.

C

crypto.Certificate Constructor

new crypto.Certificate()

Instances of the Certificate class can be created using the new keyword or by calling crypto.Certificate() as a function:

const { Certificate } = await import('node:crypto');

const cert1 = new Certificate();
const cert2 = Certificate();
M

certificate.exportChallenge

History
certificate.exportChallenge(spkac, encoding?): Buffer
PropertyTypeDescription
spkac<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the spkac string.
Returns<Buffer>The challenge component of the spkac data structure, which includes a public key and a challenge.
const { Certificate } = await import('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const challenge = cert.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints: the challenge as a UTF8 string
M

certificate.exportPublicKey

History
certificate.exportPublicKey(spkac, encoding?): Buffer
PropertyTypeDescription
spkac<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the spkac string.
Returns<Buffer>The public key component of the spkac data structure, which includes a public key and a challenge.
const { Certificate } = await import('node:crypto');
const cert = Certificate();
const spkac = getSpkacSomehow();
const publicKey = cert.exportPublicKey(spkac);
console.log(publicKey);
// Prints: the public key as <Buffer ...>
M

certificate.verifySpkac

History
certificate.verifySpkac(spkac, encoding?): boolean
PropertyTypeDescription
spkac<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the spkac string.
Returns<boolean>true if the given spkac data structure is valid, false otherwise.
import { Buffer } from 'node:buffer';
const { Certificate } = await import('node:crypto');

const cert = Certificate();
const spkac = getSpkacSomehow();
console.log(cert.verifySpkac(Buffer.from(spkac)));
// Prints: true or false
C

Cipheriv

History
class Cipheriv extends stream.Transform

Instances of the Cipheriv class are used to encrypt data. The class can be used in one of two ways:

  • As a stream that is both readable and writable, where plain unencrypted data is written to produce encrypted data on the readable side, or
  • Using the cipher.update() and cipher.final() methods to produce the encrypted data.

The crypto.createCipheriv() method is used to create Cipheriv instances. Cipheriv objects are not to be created directly using the new keyword.

Example: Using Cipheriv objects as streams:

const {
  scrypt,
  randomFill,
  createCipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';

// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
  if (err) throw err;
  // Then, we'll generate a random initialization vector
  randomFill(new Uint8Array(16), (err, iv) => {
    if (err) throw err;

    // Once we have the key and iv, we can create and use the cipher...
    const cipher = createCipheriv(algorithm, key, iv);

    let encrypted = '';
    cipher.setEncoding('hex');

    cipher.on('data', (chunk) => encrypted += chunk);
    cipher.on('end', () => console.log(encrypted));

    cipher.write('some clear text data');
    cipher.end();
  });
});

Example: Using Cipheriv and piped streams:

import {
  createReadStream,
  createWriteStream,
} from 'node:fs';

import {
  pipeline,
} from 'node:stream';

const {
  scrypt,
  randomFill,
  createCipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';

// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
  if (err) throw err;
  // Then, we'll generate a random initialization vector
  randomFill(new Uint8Array(16), (err, iv) => {
    if (err) throw err;

    const cipher = createCipheriv(algorithm, key, iv);

    const input = createReadStream('test.js');
    const output = createWriteStream('test.enc');

    pipeline(input, cipher, output, (err) => {
      if (err) throw err;
    });
  });
});

Example: Using the cipher.update() and cipher.final() methods:

const {
  scrypt,
  randomFill,
  createCipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';

// First, we'll generate the key. The key length is dependent on the algorithm.
// In this case for aes192, it is 24 bytes (192 bits).
scrypt(password, 'salt', 24, (err, key) => {
  if (err) throw err;
  // Then, we'll generate a random initialization vector
  randomFill(new Uint8Array(16), (err, iv) => {
    if (err) throw err;

    const cipher = createCipheriv(algorithm, key, iv);

    let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
    encrypted += cipher.final('hex');
    console.log(encrypted);
  });
});
M

cipher.final

History
cipher.final(outputEncoding?): Buffer|string
PropertyTypeDescription
outputEncoding<string>The encoding of the return value.
Returns<Buffer> | <string>Any remaining enciphered contents. If outputEncoding is specified, a string is returned. If an outputEncoding is not provided, a Buffer is returned.

Once the cipher.final() method has been called, the Cipheriv object can no longer be used to encrypt data. Attempts to call cipher.final() more than once will result in an error being thrown.

M

cipher.getAuthTag

History
cipher.getAuthTag(): Buffer
PropertyTypeDescription
Returns<Buffer>When using an authenticated encryption mode (GCM, CCM, OCB, and chacha20-poly1305 are currently supported), the cipher.getAuthTag() method returns a Buffer containing the authentication tag that has been computed from the given data.

The cipher.getAuthTag() method should only be called after encryption has been completed using the cipher.final() method.

If the authTagLength option was set during the cipher instance's creation, this function will return exactly authTagLength bytes.

M

cipher.setAAD

History
cipher.setAAD(buffer, options?): Cipheriv
PropertyTypeDescription
buffer<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
options<Object>stream.transform options
plaintextLength<number>-
encoding<string>The string encoding to use when buffer is a string.
Returns-{Cipheriv} The same Cipheriv instance for method chaining.

When using an authenticated encryption mode (GCM, CCM, OCB, and chacha20-poly1305 are currently supported), the cipher.setAAD() method sets the value used for the additional authenticated data (AAD) input parameter.

The plaintextLength option is optional for GCM and OCB. When using CCM, the plaintextLength option must be specified and its value must match the length of the plaintext in bytes. See CCM mode.

The cipher.setAAD() method must be called before cipher.update().

M

cipher.setAutoPadding

History
cipher.setAutoPadding(autoPadding?): Cipheriv
PropertyTypeDescription
autoPadding<boolean>Default: true
Returns-{Cipheriv} The same Cipheriv instance for method chaining.

When using block encryption algorithms, the Cipheriv class will automatically add padding to the input data to the appropriate block size. To disable the default padding call cipher.setAutoPadding(false).

When autoPadding is false, the length of the entire input data must be a multiple of the cipher's block size or cipher.final() will throw an error. Disabling automatic padding is useful for non-standard padding, for instance using 0x0 instead of PKCS padding.

The cipher.setAutoPadding() method must be called before cipher.final().

M

cipher.update

cipher.update(data, inputEncoding?, outputEncoding?): Buffer|string
PropertyTypeDescription
data<string> | <Buffer> | <TypedArray> | <DataView>-
inputEncoding<string>The encoding of the data.
outputEncoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Updates the cipher with data. If the inputEncoding argument is given, the data argument is a string using the specified encoding. If the inputEncoding argument is not given, data must be a Buffer, TypedArray, or DataView. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

The outputEncoding specifies the output format of the enciphered data. If the outputEncoding is specified, a string using the specified encoding is returned. If no outputEncoding is provided, a Buffer is returned.

The cipher.update() method can be called multiple times with new data until cipher.final() is called. Calling cipher.update() after cipher.final() will result in an error being thrown.

C

Decipheriv

History
class Decipheriv extends stream.Transform

Instances of the Decipheriv class are used to decrypt data. The class can be used in one of two ways:

  • As a stream that is both readable and writable, where plain encrypted data is written to produce unencrypted data on the readable side, or
  • Using the decipher.update() and decipher.final() methods to produce the unencrypted data.

The crypto.createDecipheriv() method is used to create Decipheriv instances. Decipheriv objects are not to be created directly using the new keyword.

Example: Using Decipheriv objects as streams:

import { Buffer } from 'node:buffer';
const {
  scryptSync,
  createDecipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Key length is dependent on the algorithm. In this case for aes192, it is
// 24 bytes (192 bits).
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

let decrypted = '';
decipher.on('readable', () => {
  let chunk;
  while (null !== (chunk = decipher.read())) {
    decrypted += chunk.toString('utf8');
  }
});
decipher.on('end', () => {
  console.log(decrypted);
  // Prints: some clear text data
});

// Encrypted with same algorithm, key and iv.
const encrypted =
  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
decipher.write(encrypted, 'hex');
decipher.end();

Example: Using Decipheriv and piped streams:

import {
  createReadStream,
  createWriteStream,
} from 'node:fs';
import { Buffer } from 'node:buffer';
const {
  scryptSync,
  createDecipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

const input = createReadStream('test.enc');
const output = createWriteStream('test.js');

input.pipe(decipher).pipe(output);

Example: Using the decipher.update() and decipher.final() methods:

import { Buffer } from 'node:buffer';
const {
  scryptSync,
  createDecipheriv,
} = await import('node:crypto');

const algorithm = 'aes-192-cbc';
const password = 'Password used to generate key';
// Use the async `crypto.scrypt()` instead.
const key = scryptSync(password, 'salt', 24);
// The IV is usually passed along with the ciphertext.
const iv = Buffer.alloc(16, 0); // Initialization vector.

const decipher = createDecipheriv(algorithm, key, iv);

// Encrypted using same algorithm, key and iv.
const encrypted =
  'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
let decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text data
M

decipher.final

History
decipher.final(outputEncoding?): Buffer|string
PropertyTypeDescription
outputEncoding<string>The encoding of the return value.
Returns<Buffer> | <string>Any remaining deciphered contents. If outputEncoding is specified, a string is returned. If an outputEncoding is not provided, a Buffer is returned.

Once the decipher.final() method has been called, the Decipheriv object can no longer be used to decrypt data. Attempts to call decipher.final() more than once will result in an error being thrown.

M

decipher.setAAD

decipher.setAAD(buffer, options?): Decipheriv
PropertyTypeDescription
buffer<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
options<Object>stream.transform options
plaintextLength<number>-
encoding<string>String encoding to use when buffer is a string.
Returns-{Decipheriv} The same Decipher for method chaining.

When using an authenticated encryption mode (GCM, CCM, OCB, and chacha20-poly1305 are currently supported), the decipher.setAAD() method sets the value used for the additional authenticated data (AAD) input parameter.

The options argument is optional for GCM. When using CCM, the plaintextLength option must be specified and its value must match the length of the ciphertext in bytes. See CCM mode.

The decipher.setAAD() method must be called before decipher.update().

When passing a string as the buffer, please consider caveats when using strings as inputs to cryptographic APIs.

M

decipher.setAuthTag

decipher.setAuthTag(buffer, encoding?): Decipheriv
PropertyTypeDescription
buffer<string> | <Buffer> | <ArrayBuffer> | <TypedArray> | <DataView>-
encoding<string>String encoding to use when buffer is a string.
Returns-{Decipheriv} The same Decipher for method chaining.

When using an authenticated encryption mode (GCM, CCM, OCB, and chacha20-poly1305 are currently supported), the decipher.setAuthTag() method is used to pass in the received authentication tag. If no tag is provided, or if the cipher text has been tampered with, decipher.final() will throw, indicating that the cipher text should be discarded due to failed authentication. If the tag length is invalid according to NIST SP 800-38D or does not match the value of the authTagLength option, decipher.setAuthTag() will throw an error.

The decipher.setAuthTag() method must be called before decipher.update() for CCM mode or before decipher.final() for GCM and OCB modes and chacha20-poly1305. decipher.setAuthTag() can only be called once.

When passing a string as the authentication tag, please consider caveats when using strings as inputs to cryptographic APIs.

M

decipher.setAutoPadding

History
decipher.setAutoPadding(autoPadding?): Decipheriv
PropertyTypeDescription
autoPadding<boolean>Default: true
Returns-{Decipheriv} The same Decipher for method chaining.

When data has been encrypted without standard block padding, calling decipher.setAutoPadding(false) will disable automatic padding to prevent decipher.final() from checking for and removing padding.

Turning auto padding off will only work if the input data's length is a multiple of the ciphers block size.

The decipher.setAutoPadding() method must be called before decipher.final().

M

decipher.update

decipher.update(data, inputEncoding?, outputEncoding?): Buffer|string
PropertyTypeDescription
data<string> | <Buffer> | <TypedArray> | <DataView>-
inputEncoding<string>The encoding of the data string.
outputEncoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Updates the decipher with data. If the inputEncoding argument is given, the data argument is a string using the specified encoding. If the inputEncoding argument is not given, data must be a Buffer. If data is a Buffer then inputEncoding is ignored.

The outputEncoding specifies the output format of the enciphered data. If the outputEncoding is specified, a string using the specified encoding is returned. If no outputEncoding is provided, a Buffer is returned.

The decipher.update() method can be called multiple times with new data until decipher.final() is called. Calling decipher.update() after decipher.final() will result in an error being thrown.

Even if the underlying cipher implements authentication, the authenticity and integrity of the plaintext returned from this function may be uncertain at this time. For authenticated encryption algorithms, authenticity is generally only established when the application calls decipher.final().

C

DiffieHellman

History

The DiffieHellman class is a utility for creating Diffie-Hellman key exchanges.

Instances of the DiffieHellman class can be created using the crypto.createDiffieHellman() function.

import assert from 'node:assert';

const {
  createDiffieHellman,
} = await import('node:crypto');

// Generate Alice's keys...
const alice = createDiffieHellman(2048);
const aliceKey = alice.generateKeys();

// Generate Bob's keys...
const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator());
const bobKey = bob.generateKeys();

// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

// OK
assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
M

diffieHellman.computeSecret

History
diffieHellman.computeSecret(otherPublicKey, inputEncoding?, outputEncoding?): Buffer|string
PropertyTypeDescription
otherPublicKey<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
inputEncoding<string>The encoding of an otherPublicKey string.
outputEncoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Computes the shared secret using otherPublicKey as the other party's public key and returns the computed shared secret. The supplied key is interpreted using the specified inputEncoding, and secret is encoded using specified outputEncoding. If the inputEncoding is not provided, otherPublicKey is expected to be a Buffer, TypedArray, or DataView.

If outputEncoding is given a string is returned; otherwise, a Buffer is returned.

M

diffieHellman.generateKeys

History
diffieHellman.generateKeys(encoding?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Generates private and public Diffie-Hellman key values unless they have been generated or computed already, and returns the public key in the specified encoding. This key should be transferred to the other party. If encoding is provided a string is returned; otherwise a Buffer is returned.

This function is a thin wrapper around DH_generate_key(). In particular, once a private key has been generated or set, calling this function only updates the public key but does not generate a new private key.

M

diffieHellman.getGenerator

History
diffieHellman.getGenerator(encoding?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Returns the Diffie-Hellman generator in the specified encoding. If encoding is provided a string is returned; otherwise a Buffer is returned.

M

diffieHellman.getPrime

History
diffieHellman.getPrime(encoding?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Returns the Diffie-Hellman prime in the specified encoding. If encoding is provided a string is returned; otherwise a Buffer is returned.

M

diffieHellman.getPrivateKey

History
diffieHellman.getPrivateKey(encoding?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Returns the Diffie-Hellman private key in the specified encoding. If encoding is provided a string is returned; otherwise a Buffer is returned.

M

diffieHellman.getPublicKey

History
diffieHellman.getPublicKey(encoding?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Returns the Diffie-Hellman public key in the specified encoding. If encoding is provided a string is returned; otherwise a Buffer is returned.

M

diffieHellman.setPrivateKey

History
diffieHellman.setPrivateKey(privateKey, encoding?)
PropertyTypeDescription
privateKey<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the privateKey string.

Sets the Diffie-Hellman private key. If the encoding argument is provided, privateKey is expected to be a string. If no encoding is provided, privateKey is expected to be a Buffer, TypedArray, or DataView.

This function does not automatically compute the associated public key. Either diffieHellman.setPublicKey() or diffieHellman.generateKeys() can be used to manually provide the public key or to automatically derive it.

M

diffieHellman.setPublicKey

History
diffieHellman.setPublicKey(publicKey, encoding?)
PropertyTypeDescription
publicKey<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the publicKey string.

Sets the Diffie-Hellman public key. If the encoding argument is provided, publicKey is expected to be a string. If no encoding is provided, publicKey is expected to be a Buffer, TypedArray, or DataView.

P

diffieHellman.verifyError

History

A bit field containing any warnings and/or errors resulting from a check performed during initialization of the DiffieHellman object.

The following values are valid for this property (as defined in node:constants module):

  • DH_CHECK_P_NOT_SAFE_PRIME
  • DH_CHECK_P_NOT_PRIME
  • DH_UNABLE_TO_CHECK_GENERATOR
  • DH_NOT_SUITABLE_GENERATOR
C

DiffieHellmanGroup

History

The DiffieHellmanGroup class takes a well-known modp group as its argument. It works the same as DiffieHellman, except that it does not allow changing its keys after creation. In other words, it does not implement setPublicKey() or setPrivateKey() methods.

const { createDiffieHellmanGroup } = await import('node:crypto');
const dh = createDiffieHellmanGroup('modp16');

The following groups are supported:

  • 'modp14' (2048 bits, RFC 3526 Section 3)
  • 'modp15' (3072 bits, RFC 3526 Section 4)
  • 'modp16' (4096 bits, RFC 3526 Section 5)
  • 'modp17' (6144 bits, RFC 3526 Section 6)
  • 'modp18' (8192 bits, RFC 3526 Section 7)

The following groups are still supported but deprecated (see Caveats):

  • 'modp1' (768 bits, RFC 2409 Section 6.1)
  • 'modp2' (1024 bits, RFC 2409 Section 6.2)
  • 'modp5' (1536 bits, RFC 3526 Section 2)

These deprecated groups might be removed in future versions of Node.js.

C

ECDH

History

The ECDH class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH) key exchanges.

Instances of the ECDH class can be created using the crypto.createECDH() function.

import assert from 'node:assert';

const {
  createECDH,
} = await import('node:crypto');

// Generate Alice's keys...
const alice = createECDH('secp521r1');
const aliceKey = alice.generateKeys();

// Generate Bob's keys...
const bob = createECDH('secp521r1');
const bobKey = bob.generateKeys();

// Exchange and generate the secret...
const aliceSecret = alice.computeSecret(bobKey);
const bobSecret = bob.computeSecret(aliceKey);

assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
// OK
S

ECDH.convertKey

History
ECDH.convertKey(key, curve, inputEncoding?, outputEncoding?, format?): Buffer|string
PropertyTypeDescription
key<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
curve<string>-
inputEncoding<string>The encoding of the key string.
outputEncoding<string>The encoding of the return value.
format<string>Default: 'uncompressed'
Returns<Buffer> | <string>-

Converts the EC Diffie-Hellman public key specified by key and curve to the format specified by format. The format argument specifies point encoding and can be 'compressed', 'uncompressed' or 'hybrid'. The supplied key is interpreted using the specified inputEncoding, and the returned key is encoded using the specified outputEncoding.

Use crypto.getCurves() to obtain a list of available curve names. On recent OpenSSL releases, openssl ecparam -list_curves will also display the name and description of each available elliptic curve.

If format is not specified the point will be returned in 'uncompressed' format.

If the inputEncoding is not provided, key is expected to be a Buffer, TypedArray, or DataView.

Example (uncompressing a key):

const {
  createECDH,
  ECDH,
} = await import('node:crypto');

const ecdh = createECDH('secp256k1');
ecdh.generateKeys();

const compressedKey = ecdh.getPublicKey('hex', 'compressed');

const uncompressedKey = ECDH.convertKey(compressedKey,
                                        'secp256k1',
                                        'hex',
                                        'hex',
                                        'uncompressed');

// The converted key and the uncompressed public key should be the same
console.log(uncompressedKey === ecdh.getPublicKey('hex'));
M

ecdh.computeSecret

ecdh.computeSecret(otherPublicKey, inputEncoding?, outputEncoding?): Buffer|string
PropertyTypeDescription
otherPublicKey<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
inputEncoding<string>The encoding of the otherPublicKey string.
outputEncoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Computes the shared secret using otherPublicKey as the other party's public key and returns the computed shared secret. The supplied key is interpreted using specified inputEncoding, and the returned secret is encoded using the specified outputEncoding. If the inputEncoding is not provided, otherPublicKey is expected to be a Buffer, TypedArray, or DataView.

If outputEncoding is given a string will be returned; otherwise a Buffer is returned.

ecdh.computeSecret will throw an ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY error when otherPublicKey lies outside of the elliptic curve. Since otherPublicKey is usually supplied from a remote user over an insecure network, be sure to handle this exception accordingly.

M

ecdh.generateKeys

History
ecdh.generateKeys(encoding?, format?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
format<string>Default: 'uncompressed'
Returns<Buffer> | <string>-

Generates private and public EC Diffie-Hellman key values, and returns the public key in the specified format and encoding. This key should be transferred to the other party.

The format argument specifies point encoding and can be 'compressed' or 'uncompressed'. If format is not specified, the point will be returned in 'uncompressed' format.

If encoding is provided a string is returned; otherwise a Buffer is returned.

M

ecdh.getPrivateKey

History
ecdh.getPrivateKey(encoding?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
Returns<Buffer> | <string>The EC Diffie-Hellman in the specified encoding.

If encoding is specified, a string is returned; otherwise a Buffer is returned.

M

ecdh.getPublicKey

History
ecdh.getPublicKey(encoding?, format?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
format<string>Default: 'uncompressed'
Returns<Buffer> | <string>The EC Diffie-Hellman public key in the specified encoding and format.

The format argument specifies point encoding and can be 'compressed' or 'uncompressed'. If format is not specified the point will be returned in 'uncompressed' format.

If encoding is specified, a string is returned; otherwise a Buffer is returned.

M

ecdh.setPrivateKey

History
ecdh.setPrivateKey(privateKey, encoding?)
PropertyTypeDescription
privateKey<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the privateKey string.

Sets the EC Diffie-Hellman private key. If encoding is provided, privateKey is expected to be a string; otherwise privateKey is expected to be a Buffer, TypedArray, or DataView.

If privateKey is not valid for the curve specified when the ECDH object was created, an error is thrown. Upon setting the private key, the associated public point (key) is also generated and set in the ECDH object.

M

ecdh.setPublicKey

History
ecdh.setPublicKey(publicKey, encoding?)
Stability: 0Deprecated
PropertyTypeDescription
publicKey<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The encoding of the publicKey string.

Sets the EC Diffie-Hellman public key. If encoding is provided publicKey is expected to be a string; otherwise a Buffer, TypedArray, or DataView is expected.

There is not normally a reason to call this method because ECDH only requires a private key and the other party's public key to compute the shared secret. Typically either ecdh.generateKeys() or ecdh.setPrivateKey() will be called. The ecdh.setPrivateKey() method attempts to generate the public point/key associated with the private key being set.

Example (obtaining a shared secret):

const {
  createECDH,
  createHash,
} = await import('node:crypto');

const alice = createECDH('secp256k1');
const bob = createECDH('secp256k1');

// This is a shortcut way of specifying one of Alice's previous private
// keys. It would be unwise to use such a predictable private key in a real
// application.
alice.setPrivateKey(
  createHash('sha256').update('alice', 'utf8').digest(),
);

// Bob uses a newly generated cryptographically strong
// pseudorandom key pair
bob.generateKeys();

const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');

// aliceSecret and bobSecret should be the same shared secret value
console.log(aliceSecret === bobSecret);
C

Hash

History
class Hash extends stream.Transform

The Hash class is a utility for creating hash digests of data. It can be used in one of two ways:

  • As a stream that is both readable and writable, where data is written to produce a computed hash digest on the readable side, or
  • Using the hash.update() and hash.digest() methods to produce the computed hash.

The crypto.createHash() method is used to create Hash instances. Hash objects are not to be created directly using the new keyword.

Example: Using Hash objects as streams:

const {
  createHash,
} = await import('node:crypto');

const hash = createHash('sha256');

hash.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = hash.read();
  if (data) {
    console.log(data.toString('hex'));
    // Prints:
    //   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
  }
});

hash.write('some data to hash');
hash.end();

Example: Using Hash and piped streams:

import { createReadStream } from 'node:fs';
import { stdout } from 'node:process';
const { createHash } = await import('node:crypto');

const hash = createHash('sha256');

const input = createReadStream('test.js');
input.pipe(hash).setEncoding('hex').pipe(stdout);

Example: Using the hash.update() and hash.digest() methods:

const {
  createHash,
} = await import('node:crypto');

const hash = createHash('sha256');

hash.update('some data to hash');
console.log(hash.digest('hex'));
// Prints:
//   6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
M

hash.copy

History
hash.copy(options?): Hash
PropertyTypeDescription
options<Object>stream.transform options
Returns<Hash>-

Creates a new Hash object that contains a deep copy of the internal state of the current Hash object.

The optional options argument controls stream behavior. For XOF hash functions such as 'shake256', the outputLength option can be used to specify the desired output length in bytes.

An error is thrown when an attempt is made to copy the Hash object after its hash.digest() method has been called.

// Calculate a rolling hash.
const {
  createHash,
} = await import('node:crypto');

const hash = createHash('sha256');

hash.update('one');
console.log(hash.copy().digest('hex'));

hash.update('two');
console.log(hash.copy().digest('hex'));

hash.update('three');
console.log(hash.copy().digest('hex'));

// Etc.
M

hash.digest

History
hash.digest(encoding?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Calculates the digest of all of the data passed to be hashed (using the hash.update() method). If encoding is provided a string will be returned; otherwise a Buffer is returned.

The Hash object can not be used again after hash.digest() method has been called. Multiple calls will cause an error to be thrown.

M

hash.update

hash.update(data, inputEncoding?)
PropertyTypeDescription
data<string> | <Buffer> | <TypedArray> | <DataView>-
inputEncoding<string>The encoding of the data string.

Updates the hash content with the given data, the encoding of which is given in inputEncoding. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

This can be called many times with new data as it is streamed.

C

Hmac

History
class Hmac extends stream.Transform

The Hmac class is a utility for creating cryptographic HMAC digests. It can be used in one of two ways:

  • As a stream that is both readable and writable, where data is written to produce a computed HMAC digest on the readable side, or
  • Using the hmac.update() and hmac.digest() methods to produce the computed HMAC digest.

The crypto.createHmac() method is used to create Hmac instances. Hmac objects are not to be created directly using the new keyword.

Example: Using Hmac objects as streams:

const {
  createHmac,
} = await import('node:crypto');

const hmac = createHmac('sha256', 'a secret');

hmac.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = hmac.read();
  if (data) {
    console.log(data.toString('hex'));
    // Prints:
    //   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
  }
});

hmac.write('some data to hash');
hmac.end();

Example: Using Hmac and piped streams:

import { createReadStream } from 'node:fs';
import { stdout } from 'node:process';
const {
  createHmac,
} = await import('node:crypto');

const hmac = createHmac('sha256', 'a secret');

const input = createReadStream('test.js');
input.pipe(hmac).pipe(stdout);

Example: Using the hmac.update() and hmac.digest() methods:

const {
  createHmac,
} = await import('node:crypto');

const hmac = createHmac('sha256', 'a secret');

hmac.update('some data to hash');
console.log(hmac.digest('hex'));
// Prints:
//   7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
M

hmac.digest

History
hmac.digest(encoding?): Buffer|string
PropertyTypeDescription
encoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Calculates the HMAC digest of all of the data passed using hmac.update(). If encoding is provided a string is returned; otherwise a Buffer is returned;

The Hmac object can not be used again after hmac.digest() has been called. Multiple calls to hmac.digest() will result in an error being thrown.

M

hmac.update

hmac.update(data, inputEncoding?)
PropertyTypeDescription
data<string> | <Buffer> | <TypedArray> | <DataView>-
inputEncoding<string>The encoding of the data string.

Updates the Hmac content with the given data, the encoding of which is given in inputEncoding. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

This can be called many times with new data as it is streamed.

C

KeyObject

Node.js uses a KeyObject class to represent a symmetric or asymmetric key, and each kind of key exposes different functions. The crypto.createSecretKey(), crypto.createPublicKey() and crypto.createPrivateKey() methods are used to create KeyObject instances. KeyObject objects are not to be created directly using the new keyword.

Most applications should consider using the new KeyObject API instead of passing keys as strings or Buffers due to improved security features.

KeyObject instances can be passed to other threads via postMessage(). The receiver obtains a cloned KeyObject, and the KeyObject does not need to be listed in the transferList argument.

S

KeyObject.from

History
KeyObject.from(key): KeyObject
PropertyTypeDescription
key<CryptoKey>-
Returns<KeyObject>-

Example: Converting a CryptoKey instance to a KeyObject:

const { KeyObject } = await import('node:crypto');
const { subtle } = globalThis.crypto;

const key = await subtle.generateKey({
  name: 'HMAC',
  hash: 'SHA-256',
  length: 256,
}, true, ['sign', 'verify']);

const keyObject = KeyObject.from(key);
console.log(keyObject.symmetricKeySize);
// Prints: 32 (symmetric key size in bytes)
P

keyObject.asymmetricKeyDetails

PropertyTypeDescription
-<Object>-
modulusLength<number>Key size in bits (RSA, DSA).
publicExponent<bigint>Public exponent (RSA).
hashAlgorithm<string>Name of the message digest (RSA-PSS).
mgf1HashAlgorithm<string>Name of the message digest used by MGF1 (RSA-PSS).
saltLength<number>Minimal salt length in bytes (RSA-PSS).
divisorLength<number>Size of q in bits (DSA).
namedCurve<string>Name of the curve (EC).

This property exists only on asymmetric keys. Depending on the type of the key, this object contains information about the key. None of the information obtained through this property can be used to uniquely identify a key or to compromise the security of the key.

For RSA-PSS keys, if the key material contains a RSASSA-PSS-params sequence, the hashAlgorithm, mgf1HashAlgorithm, and saltLength properties will be set.

Other key details might be exposed via this API using additional attributes.

P

keyObject.asymmetricKeyType

PropertyTypeDescription
-<string>-

For asymmetric keys, this property represents the type of the key. Supported key types are:

  • 'rsa' (OID 1.2.840.113549.1.1.1)
  • 'rsa-pss' (OID 1.2.840.113549.1.1.10)
  • 'dsa' (OID 1.2.840.10040.4.1)
  • 'ec' (OID 1.2.840.10045.2.1)
  • 'x25519' (OID 1.3.101.110)
  • 'x448' (OID 1.3.101.111)
  • 'ed25519' (OID 1.3.101.112)
  • 'ed448' (OID 1.3.101.113)
  • 'dh' (OID 1.2.840.113549.1.3.1)

This property is undefined for unrecognized KeyObject types and symmetric keys.

M

keyObject.equals

History
keyObject.equals(otherKeyObject): boolean
PropertyTypeDescription
otherKeyObject<KeyObject>KeyObject with which to compare keyObject.
Returns<boolean>-

Returns true or false depending on whether the keys have exactly the same type, value, and parameters. This method is not constant time.

M

keyObject.export

History
keyObject.export(options?): string|Buffer|Object
PropertyTypeDescription
options<Object>-
Returns<string> | <Buffer> | <Object>-

For symmetric keys, the following encoding options can be used:

PropertyTypeDescription
format<string>Must be 'buffer' (default) or 'jwk'.

For public keys, the following encoding options can be used:

PropertyTypeDescription
type<string>Must be one of 'pkcs1' (RSA only) or 'spki'.
format<string>Must be 'pem', 'der', or 'jwk'.

For private keys, the following encoding options can be used:

PropertyTypeDescription
type<string>Must be one of 'pkcs1' (RSA only), 'pkcs8' or 'sec1' (EC only).
format<string>Must be 'pem', 'der', or 'jwk'.
cipher<string>If specified, the private key will be encrypted with the given cipher and passphrase using PKCS#5 v2.0 password based encryption.
passphrase<string> | <Buffer>The passphrase to use for encryption, see cipher.

The result type depends on the selected encoding format, when PEM the result is a string, when DER it will be a buffer containing the data encoded as DER, when JWK it will be an object.

When JWK encoding format was selected, all other encoding options are ignored.

PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of the cipher and format options. The PKCS#8 type can be used with any format to encrypt any key algorithm (RSA, EC, or DH) by specifying a cipher. PKCS#1 and SEC1 can only be encrypted by specifying a cipher when the PEM format is used. For maximum compatibility, use PKCS#8 for encrypted private keys. Since PKCS#8 defines its own encryption mechanism, PEM-level encryption is not supported when encrypting a PKCS#8 key. See RFC 5208 for PKCS#8 encryption and RFC 1421 for PKCS#1 and SEC1 encryption.

P

keyObject.symmetricKeySize

History
PropertyTypeDescription
-<number>-

For secret keys, this property represents the size of the key in bytes. This property is undefined for asymmetric keys.

M

keyObject.toCryptoKey

History
keyObject.toCryptoKey(algorithm, extractable, keyUsages)
PropertyTypeDescription
extractable<boolean>-
keyUsages<string[]>See Key usages.
Returns<CryptoKey>-

Converts a KeyObject instance to a CryptoKey.

P

keyObject.type

History
PropertyTypeDescription
-<string>-

Depending on the type of this KeyObject, this property is either 'secret' for secret (symmetric) keys, 'public' for public (asymmetric) keys or 'private' for private (asymmetric) keys.

C

Sign

History
class Sign extends stream.Writable

The Sign class is a utility for generating signatures. It can be used in one of two ways:

  • As a writable stream, where data to be signed is written and the sign.sign() method is used to generate and return the signature, or
  • Using the sign.update() and sign.sign() methods to produce the signature.

The crypto.createSign() method is used to create Sign instances. The argument is the string name of the hash function to use. Sign objects are not to be created directly using the new keyword.

Example: Using Sign and Verify objects as streams:

const {
  generateKeyPairSync,
  createSign,
  createVerify,
} = await import('node:crypto');

const { privateKey, publicKey } = generateKeyPairSync('ec', {
  namedCurve: 'sect239k1',
});

const sign = createSign('SHA256');
sign.write('some data to sign');
sign.end();
const signature = sign.sign(privateKey, 'hex');

const verify = createVerify('SHA256');
verify.write('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature, 'hex'));
// Prints: true

Example: Using the sign.update() and verify.update() methods:

const {
  generateKeyPairSync,
  createSign,
  createVerify,
} = await import('node:crypto');

const { privateKey, publicKey } = generateKeyPairSync('rsa', {
  modulusLength: 2048,
});

const sign = createSign('SHA256');
sign.update('some data to sign');
sign.end();
const signature = sign.sign(privateKey);

const verify = createVerify('SHA256');
verify.update('some data to sign');
verify.end();
console.log(verify.verify(publicKey, signature));
// Prints: true
M

sign

sign(privateKey, outputEncoding?): Buffer|string
PropertyTypeDescription
privateKey<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>-
dsaEncoding<string>-
padding<integer>-
saltLength<integer>-
outputEncoding<string>The encoding of the return value.
Returns<Buffer> | <string>-

Calculates the signature on all the data passed through using either sign.update() or sign.write().

If privateKey is not a KeyObject, this function behaves as if privateKey had been passed to crypto.createPrivateKey(). If it is an object, the following additional properties can be passed:

PropertyTypeDescription
dsaEncoding<string>For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:
padding<integer>Optional padding value for RSA, one of the following:
saltLength<integer>Salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN (default) sets it to the maximum permissible value.

If outputEncoding is provided a string is returned; otherwise a Buffer is returned.

The Sign object can not be again used after sign.sign() method has been called. Multiple calls to sign.sign() will result in an error being thrown.

M

sign.update

sign.update(data, inputEncoding?)
PropertyTypeDescription
data<string> | <Buffer> | <TypedArray> | <DataView>-
inputEncoding<string>The encoding of the data string.

Updates the Sign content with the given data, the encoding of which is given in inputEncoding. If encoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

This can be called many times with new data as it is streamed.

C

Verify

History
class Verify extends stream.Writable

The Verify class is a utility for verifying signatures. It can be used in one of two ways:

The crypto.createVerify() method is used to create Verify instances. Verify objects are not to be created directly using the new keyword.

See Sign for examples.

M

verify.update

verify.update(data, inputEncoding?)
PropertyTypeDescription
data<string> | <Buffer> | <TypedArray> | <DataView>-
inputEncoding<string>The encoding of the data string.

Updates the Verify content with the given data, the encoding of which is given in inputEncoding. If inputEncoding is not provided, and the data is a string, an encoding of 'utf8' is enforced. If data is a Buffer, TypedArray, or DataView, then inputEncoding is ignored.

This can be called many times with new data as it is streamed.

M

verify

verify(object, signature, signatureEncoding?): boolean
PropertyTypeDescription
object<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>-
dsaEncoding<string>-
padding<integer>-
saltLength<integer>-
signature<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
signatureEncoding<string>The encoding of the signature string.
Returns<boolean>true or false depending on the validity of the signature for the data and public key.

Verifies the provided data using the given object and signature.

If object is not a KeyObject, this function behaves as if object had been passed to crypto.createPublicKey(). If it is an object, the following additional properties can be passed:

PropertyTypeDescription
dsaEncoding<string>For DSA and ECDSA, this option specifies the format of the signature. It can be one of the following:
padding<integer>Optional padding value for RSA, one of the following:
saltLength<integer>Salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_AUTO (default) causes it to be determined automatically.

The signature argument is the previously calculated signature for the data, in the signatureEncoding. If a signatureEncoding is specified, the signature is expected to be a string; otherwise signature is expected to be a Buffer, TypedArray, or DataView.

The verify object can not be used again after verify.verify() has been called. Multiple calls to verify.verify() will result in an error being thrown.

Because public keys can be derived from private keys, a private key may be passed instead of a public key.

C

X509Certificate

History

Encapsulates an X509 certificate and provides read-only access to its information.

const { X509Certificate } = await import('node:crypto');

const x509 = new X509Certificate('{... pem encoded cert ...}');

console.log(x509.subject);
C

X509Certificate Constructor

History
new X509Certificate(buffer)
PropertyTypeDescription
buffer<string> | <TypedArray> | <Buffer> | <DataView>A PEM or DER encoded X509 Certificate.
P

x509.ca

History
PropertyTypeDescription
-<boolean>Will be true if this is a Certificate Authority (CA) certificate.
M

x509.checkEmail

x509.checkEmail(email, options?): string|undefined
PropertyTypeDescription
email<string>-
options<Object>-
subject<string>'default', 'always', or 'never'. Default: 'default'.
Returns<string> | <undefined>Returns email if the certificate matches, undefined if it does not.

Checks whether the certificate matches the given email address.

If the 'subject' option is undefined or set to 'default', the certificate subject is only considered if the subject alternative name extension either does not exist or does not contain any email addresses.

If the 'subject' option is set to 'always' and if the subject alternative name extension either does not exist or does not contain a matching email address, the certificate subject is considered.

If the 'subject' option is set to 'never', the certificate subject is never considered, even if the certificate contains no subject alternative names.

M

x509.checkHost

x509.checkHost(name, options?): string|undefined
PropertyTypeDescription
name<string>-
options<Object>-
subject<string>'default', 'always', or 'never'. Default: 'default'.
wildcards<boolean>Default: true.
partialWildcards<boolean>Default: true.
multiLabelWildcards<boolean>Default: false.
singleLabelSubdomains<boolean>Default: false.
Returns<string> | <undefined>Returns a subject name that matches name, or undefined if no subject name matches name.

Checks whether the certificate matches the given host name.

If the certificate matches the given host name, the matching subject name is returned. The returned name might be an exact match (e.g., foo.example.com) or it might contain wildcards (e.g., *.example.com). Because host name comparisons are case-insensitive, the returned subject name might also differ from the given name in capitalization.

If the 'subject' option is undefined or set to 'default', the certificate subject is only considered if the subject alternative name extension either does not exist or does not contain any DNS names. This behavior is consistent with RFC 2818 ("HTTP Over TLS").

If the 'subject' option is set to 'always' and if the subject alternative name extension either does not exist or does not contain a matching DNS name, the certificate subject is considered.

If the 'subject' option is set to 'never', the certificate subject is never considered, even if the certificate contains no subject alternative names.

M

x509.checkIP

x509.checkIP(ip): string|undefined
PropertyTypeDescription
ip<string>-
Returns<string> | <undefined>Returns ip if the certificate matches, undefined if it does not.

Checks whether the certificate matches the given IP address (IPv4 or IPv6).

Only RFC 5280 iPAddress subject alternative names are considered, and they must match the given ip address exactly. Other subject alternative names as well as the subject field of the certificate are ignored.

M

x509.checkIssued

History
x509.checkIssued(otherCert): boolean
PropertyTypeDescription
otherCert<X509Certificate>-
Returns<boolean>-

Checks whether this certificate was potentially issued by the given otherCert by comparing the certificate metadata.

This is useful for pruning a list of possible issuer certificates which have been selected using a more rudimentary filtering routine, i.e. just based on subject and issuer names.

Finally, to verify that this certificate's signature was produced by a private key corresponding to otherCert's public key use x509.verify(publicKey) with otherCert's public key represented as a KeyObject like so

if (!x509.verify(otherCert.publicKey)) {
  throw new Error('otherCert did not issue x509');
}
M

x509.checkPrivateKey

History
x509.checkPrivateKey(privateKey): boolean
PropertyTypeDescription
privateKey<KeyObject>A private key.
Returns<boolean>-

Checks whether the public key for this certificate is consistent with the given private key.

P

x509.extKeyUsage

History
PropertyTypeDescription
-<string[]>-

An array detailing the key extended usages for this certificate.

P

x509.fingerprint

History
PropertyTypeDescription
-<string>-

The SHA-1 fingerprint of this certificate.

Because SHA-1 is cryptographically broken and because the security of SHA-1 is significantly worse than that of algorithms that are commonly used to sign certificates, consider using x509.fingerprint256 instead.

P

x509.fingerprint256

History
PropertyTypeDescription
-<string>-

The SHA-256 fingerprint of this certificate.

P

x509.fingerprint512

History
PropertyTypeDescription
-<string>-

The SHA-512 fingerprint of this certificate.

Because computing the SHA-256 fingerprint is usually faster and because it is only half the size of the SHA-512 fingerprint, x509.fingerprint256 may be a better choice. While SHA-512 presumably provides a higher level of security in general, the security of SHA-256 matches that of most algorithms that are commonly used to sign certificates.

P

x509.infoAccess

PropertyTypeDescription
-<string>-

A textual representation of the certificate's authority information access extension.

This is a line feed separated list of access descriptions. Each line begins with the access method and the kind of the access location, followed by a colon and the value associated with the access location.

After the prefix denoting the access method and the kind of the access location, the remainder of each line might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats.

P

x509.issuer

History
PropertyTypeDescription
-<string>-

The issuer identification included in this certificate.

P

x509.issuerCertificate

History
PropertyTypeDescription
-<X509Certificate>-

The issuer certificate or undefined if the issuer certificate is not available.

P

x509.publicKey

History
PropertyTypeDescription
-<KeyObject>-

The public key <KeyObject> for this certificate.

P

x509.raw

History
PropertyTypeDescription
-<Buffer>-

A Buffer containing the DER encoding of this certificate.

P

x509.serialNumber

History
PropertyTypeDescription
-<string>-

The serial number of this certificate.

Serial numbers are assigned by certificate authorities and do not uniquely identify certificates. Consider using x509.fingerprint256 as a unique identifier instead.

P

x509.subject

History
PropertyTypeDescription
-<string>-

The complete subject of this certificate.

P

x509.subjectAltName

PropertyTypeDescription
-<string>-

The subject alternative name specified for this certificate.

This is a comma-separated list of subject alternative names. Each entry begins with a string identifying the kind of the subject alternative name followed by a colon and the value associated with the entry.

Earlier versions of Node.js incorrectly assumed that it is safe to split this property at the two-character sequence ', ' (see CVE-2021-44532). However, both malicious and legitimate certificates can contain subject alternative names that include this sequence when represented as a string.

After the prefix denoting the type of the entry, the remainder of each entry might be enclosed in quotes to indicate that the value is a JSON string literal. For backward compatibility, Node.js only uses JSON string literals within this property when necessary to avoid ambiguity. Third-party code should be prepared to handle both possible entry formats.

M

x509.toJSON

History
x509.toJSON()
PropertyTypeDescription
-<string>-

There is no standard JSON encoding for X509 certificates. The toJSON() method returns a string containing the PEM encoded certificate.

M

x509.toLegacyObject

History
x509.toLegacyObject()
PropertyTypeDescription
-<Object>-

Returns information about this certificate using the legacy certificate object encoding.

M

x509.toString

History
x509.toString()
PropertyTypeDescription
-<string>-

Returns the PEM-encoded certificate.

P

x509.validFrom

History
PropertyTypeDescription
-<string>-

The date/time from which this certificate is valid.

P

x509.validFromDate

History
PropertyTypeDescription
-<Date>-

The date/time from which this certificate is valid, encapsulated in a Date object.

P

x509.validTo

History
PropertyTypeDescription
-<string>-

The date/time until which this certificate is valid.

P

x509.validToDate

History
PropertyTypeDescription
-<Date>-

The date/time until which this certificate is valid, encapsulated in a Date object.

M

x509.verify

History
x509.verify(publicKey): boolean
PropertyTypeDescription
publicKey<KeyObject>A public key.
Returns<boolean>-

Verifies that this certificate was signed by the given public key. Does not perform any other validation checks on the certificate.

node:crypto module methods and properties

M

crypto.checkPrime

crypto.checkPrime(candidate, options?, callback)
PropertyTypeDescription
candidate<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>A possible prime encoded as a sequence of big endian octets of arbitrary length.
options<Object>-
checks<number>The number of Miller-Rabin probabilistic primality iterations to perform. When the value is 0 (zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for the BN_is_prime_ex function nchecks options for more details. Default: 0
callback<Function>-
err<Error>Set to an <Error> object if an error occurred during check.
result<boolean>true if the candidate is a prime with an error probability less than 0.25 ** options.checks.

Checks the primality of the candidate.

M

crypto.checkPrimeSync

History
crypto.checkPrimeSync(candidate, options?): boolean
PropertyTypeDescription
candidate<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>A possible prime encoded as a sequence of big endian octets of arbitrary length.
options<Object>-
checks<number>The number of Miller-Rabin probabilistic primality iterations to perform. When the value is 0 (zero), a number of checks is used that yields a false positive rate of at most 2-64 for random input. Care must be used when selecting a number of checks. Refer to the OpenSSL documentation for the BN_is_prime_ex function nchecks options for more details. Default: 0
Returns<boolean>true if the candidate is a prime with an error probability less than 0.25 ** options.checks.

Checks the primality of the candidate.

P

crypto.constants

History
PropertyTypeDescription
-<Object>-

An object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in Crypto constants.

M

crypto.createCipheriv

crypto.createCipheriv(algorithm, key, iv, options?): Cipheriv

Creates and returns a Cipheriv object, with the given algorithm, key and initialization vector (iv).

The options argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm') is used. In that case, the authTagLength option is required and specifies the length of the authentication tag in bytes, see CCM mode. In GCM mode, the authTagLength option is not required but can be used to set the length of the authentication tag that will be returned by getAuthTag() and defaults to 16 bytes. For chacha20-poly1305, the authTagLength option defaults to 16 bytes.

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On recent OpenSSL releases, openssl list -cipher-algorithms will display the available cipher algorithms.

The key is the raw key used by the algorithm and iv is an initialization vector. Both arguments must be 'utf8' encoded strings, Buffers, TypedArray, or DataViews. The key may optionally be a KeyObject of type secret. If the cipher does not need an initialization vector, iv may be null.

When passing strings for key or iv, please consider caveats when using strings as inputs to cryptographic APIs.

Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be.

M

crypto.createDecipheriv

crypto.createDecipheriv(algorithm, key, iv, options?): Decipheriv

Creates and returns a Decipheriv object that uses the given algorithm, key and initialization vector (iv).

The options argument controls stream behavior and is optional except when a cipher in CCM or OCB mode (e.g. 'aes-128-ccm') is used. In that case, the authTagLength option is required and specifies the length of the authentication tag in bytes, see CCM mode. For AES-GCM and chacha20-poly1305, the authTagLength option defaults to 16 bytes and must be set to a different value if a different length is used.

The algorithm is dependent on OpenSSL, examples are 'aes192', etc. On recent OpenSSL releases, openssl list -cipher-algorithms will display the available cipher algorithms.

The key is the raw key used by the algorithm and iv is an initialization vector. Both arguments must be 'utf8' encoded strings, Buffers, TypedArray, or DataViews. The key may optionally be a KeyObject of type secret. If the cipher does not need an initialization vector, iv may be null.

When passing strings for key or iv, please consider caveats when using strings as inputs to cryptographic APIs.

Initialization vectors should be unpredictable and unique; ideally, they will be cryptographically random. They do not have to be secret: IVs are typically just added to ciphertext messages unencrypted. It may sound contradictory that something has to be unpredictable and unique, but does not have to be secret; remember that an attacker must not be able to predict ahead of time what a given IV will be.

M

crypto.createDiffieHellman

crypto.createDiffieHellman(prime, primeEncoding?, generator?, generatorEncoding?): DiffieHellman
PropertyTypeDescription
prime<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
primeEncoding<string>The encoding of the prime string.
generator<number> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>Default: 2
generatorEncoding<string>The encoding of the generator string.
Returns<DiffieHellman>-

Creates a DiffieHellman key exchange object using the supplied prime and an optional specific generator.

The generator argument can be a number, string, or Buffer. If generator is not specified, the value 2 is used.

If primeEncoding is specified, prime is expected to be a string; otherwise a Buffer, TypedArray, or DataView is expected.

If generatorEncoding is specified, generator is expected to be a string; otherwise a number, Buffer, TypedArray, or DataView is expected.

M

crypto.createDiffieHellman

History
crypto.createDiffieHellman(primeLength, generator?): DiffieHellman
PropertyTypeDescription
primeLength<number>-
generator<number>Default: 2
Returns<DiffieHellman>-

Creates a DiffieHellman key exchange object and generates a prime of primeLength bits using an optional specific numeric generator. If generator is not specified, the value 2 is used.

M

crypto.createDiffieHellmanGroup

History
crypto.createDiffieHellmanGroup(name): DiffieHellmanGroup
PropertyTypeDescription
name<string>-
Returns<DiffieHellmanGroup>-

An alias for crypto.getDiffieHellman()

M

crypto.createECDH

History
crypto.createECDH(curveName): ECDH
PropertyTypeDescription
curveName<string>-
Returns<ECDH>-

Creates an Elliptic Curve Diffie-Hellman (ECDH) key exchange object using a predefined curve specified by the curveName string. Use crypto.getCurves() to obtain a list of available curve names. On recent OpenSSL releases, openssl ecparam -list_curves will also display the name and description of each available elliptic curve.

M

crypto.createHash

crypto.createHash(algorithm, options?): Hash
PropertyTypeDescription
algorithm<string>-
options<Object>stream.transform options
Returns<Hash>-

Creates and returns a Hash object that can be used to generate hash digests using the given algorithm. Optional options argument controls stream behavior. For XOF hash functions such as 'shake256', the outputLength option can be used to specify the desired output length in bytes.

The algorithm is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc. On recent releases of OpenSSL, openssl list -digest-algorithms will display the available digest algorithms.

Example: generating the sha256 sum of a file

import {
  createReadStream,
} from 'node:fs';
import { argv } from 'node:process';
const {
  createHash,
} = await import('node:crypto');

const filename = argv[2];

const hash = createHash('sha256');

const input = createReadStream(filename);
input.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = input.read();
  if (data)
    hash.update(data);
  else {
    console.log(`${hash.digest('hex')} ${filename}`);
  }
});
M

crypto.createHmac

crypto.createHmac(algorithm, key, options?): Hmac
PropertyTypeDescription
algorithm<string>-
key<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>-
options<Object>stream.transform options
encoding<string>The string encoding to use when key is a string.
Returns<Hmac>-

Creates and returns an Hmac object that uses the given algorithm and key. Optional options argument controls stream behavior.

The algorithm is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc. On recent releases of OpenSSL, openssl list -digest-algorithms will display the available digest algorithms.

The key is the HMAC key used to generate the cryptographic HMAC hash. If it is a KeyObject, its type must be secret. If it is a string, please consider caveats when using strings as inputs to cryptographic APIs. If it was obtained from a cryptographically secure source of entropy, such as crypto.randomBytes() or crypto.generateKey(), its length should not exceed the block size of algorithm (e.g., 512 bits for SHA-256).

Example: generating the sha256 HMAC of a file

import {
  createReadStream,
} from 'node:fs';
import { argv } from 'node:process';
const {
  createHmac,
} = await import('node:crypto');

const filename = argv[2];

const hmac = createHmac('sha256', 'a secret');

const input = createReadStream(filename);
input.on('readable', () => {
  // Only one element is going to be produced by the
  // hash stream.
  const data = input.read();
  if (data)
    hmac.update(data);
  else {
    console.log(`${hmac.digest('hex')} ${filename}`);
  }
});
M

crypto.createPrivateKey

crypto.createPrivateKey(key): KeyObject
PropertyTypeDescription
key<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
key<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <Object>The key material, either in PEM, DER, or JWK format.
format<string>Must be 'pem', 'der', or ''jwk'. Default: 'pem'.
type<string>Must be 'pkcs1', 'pkcs8' or 'sec1'. This option is required only if the format is 'der' and ignored otherwise.
passphrase<string> | <Buffer>The passphrase to use for decryption.
encoding<string>The string encoding to use when key is a string.
Returns<KeyObject>-

Creates and returns a new key object containing a private key. If key is a string or Buffer, format is assumed to be 'pem'; otherwise, key must be an object with the properties described above.

If the private key is encrypted, a passphrase must be specified. The length of the passphrase is limited to 1024 bytes.

M

crypto.createPublicKey

crypto.createPublicKey(key): KeyObject
PropertyTypeDescription
key<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
key<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <Object>The key material, either in PEM, DER, or JWK format.
format<string>Must be 'pem', 'der', or 'jwk'. Default: 'pem'.
type<string>Must be 'pkcs1' or 'spki'. This option is required only if the format is 'der' and ignored otherwise.
encoding<string>The string encoding to use when key is a string.
Returns<KeyObject>-

Creates and returns a new key object containing a public key. If key is a string or Buffer, format is assumed to be 'pem'; if key is a KeyObject with type 'private', the public key is derived from the given private key; otherwise, key must be an object with the properties described above.

If the format is 'pem', the 'key' may also be an X.509 certificate.

Because public keys can be derived from private keys, a private key may be passed instead of a public key. In that case, this function behaves as if crypto.createPrivateKey() had been called, except that the type of the returned KeyObject will be 'public' and that the private key cannot be extracted from the returned KeyObject. Similarly, if a KeyObject with type 'private' is given, a new KeyObject with type 'public' will be returned and it will be impossible to extract the private key from the returned object.

M

crypto.createSecretKey

crypto.createSecretKey(key, encoding?): KeyObject
PropertyTypeDescription
key<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
encoding<string>The string encoding when key is a string.
Returns<KeyObject>-

Creates and returns a new key object containing a secret key for symmetric encryption or Hmac.

M

crypto.createSign

History
crypto.createSign(algorithm, options?): Sign
PropertyTypeDescription
algorithm<string>-
options<Object>stream.Writable options
Returns<Sign>-

Creates and returns a Sign object that uses the given algorithm. Use crypto.getHashes() to obtain the names of the available digest algorithms. Optional options argument controls the stream.Writable behavior.

In some cases, a Sign instance can be created using the name of a signature algorithm, such as 'RSA-SHA256', instead of a digest algorithm. This will use the corresponding digest algorithm. This does not work for all signature algorithms, such as 'ecdsa-with-SHA256', so it is best to always use digest algorithm names.

M

crypto.createVerify

History
crypto.createVerify(algorithm, options?): Verify
PropertyTypeDescription
algorithm<string>-
options<Object>stream.Writable options
Returns<Verify>-

Creates and returns a Verify object that uses the given algorithm. Use crypto.getHashes() to obtain an array of names of the available signing algorithms. Optional options argument controls the stream.Writable behavior.

In some cases, a Verify instance can be created using the name of a signature algorithm, such as 'RSA-SHA256', instead of a digest algorithm. This will use the corresponding digest algorithm. This does not work for all signature algorithms, such as 'ecdsa-with-SHA256', so it is best to always use digest algorithm names.

M

crypto.diffieHellman

History
crypto.diffieHellman(options, callback?): Buffer
PropertyTypeDescription
options<Object>-
privateKey<KeyObject>-
publicKey<KeyObject>-
callback<Function>-
err<Error>-
secret<Buffer>-
Returns<Buffer>if the callback function is not provided.

Computes the Diffie-Hellman secret based on a privateKey and a publicKey. Both keys must have the same asymmetricKeyType, which must be one of 'dh' (for Diffie-Hellman), 'ec', 'x448', or 'x25519' (for ECDH).

If the callback function is provided this function uses libuv's threadpool.

P

crypto.fips

History
Stability: 0Deprecated

Property for checking and controlling whether a FIPS compliant crypto provider is currently in use. Setting to true requires a FIPS build of Node.js.

This property is deprecated. Please use crypto.setFips() and crypto.getFips() instead.

M

crypto.generateKey

crypto.generateKey(type, options, callback)
  • type: <string> The intended use of the generated secret key. Currently accepted values are 'hmac' and 'aes'.
  • options: <Object>
    • length: <number> The bit length of the key to generate. This must be a value greater than 0.
      • If type is 'hmac', the minimum is 8, and the maximum length is 231-1. If the value is not a multiple of 8, the generated key will be truncated to Math.floor(length / 8).
      • If type is 'aes', the length must be one of 128, 192, or 256.
  • callback: <Function>

Asynchronously generates a new random secret key of the given length. The type will determine which validations will be performed on the length.

const {
  generateKey,
} = await import('node:crypto');

generateKey('hmac', { length: 512 }, (err, key) => {
  if (err) throw err;
  console.log(key.export().toString('hex'));  // 46e..........620
});

The size of a generated HMAC key should not exceed the block size of the underlying hash function. See crypto.createHmac() for more information.

M

crypto.generateKeyPair

crypto.generateKeyPair(type, options, callback)

Generates a new asymmetric key pair of the given type. RSA, RSA-PSS, DSA, EC, Ed25519, Ed448, X25519, X448, and DH are currently supported.

If a publicKeyEncoding or privateKeyEncoding was specified, this function behaves as if keyObject.export() had been called on its result. Otherwise, the respective part of the key is returned as a KeyObject.

It is recommended to encode public keys as 'spki' and private keys as 'pkcs8' with encryption for long-term storage:

const {
  generateKeyPair,
} = await import('node:crypto');

generateKeyPair('rsa', {
  modulusLength: 4096,
  publicKeyEncoding: {
    type: 'spki',
    format: 'pem',
  },
  privateKeyEncoding: {
    type: 'pkcs8',
    format: 'pem',
    cipher: 'aes-256-cbc',
    passphrase: 'top secret',
  },
}, (err, publicKey, privateKey) => {
  // Handle errors and use the generated key pair.
});

On completion, callback will be called with err set to undefined and publicKey / privateKey representing the generated key pair.

If this method is invoked as its util.promisify()ed version, it returns a Promise for an Object with publicKey and privateKey properties.

M

crypto.generateKeyPairSync

crypto.generateKeyPairSync(type, options)

Generates a new asymmetric key pair of the given type. RSA, RSA-PSS, DSA, EC, Ed25519, Ed448, X25519, X448, and DH are currently supported.

If a publicKeyEncoding or privateKeyEncoding was specified, this function behaves as if keyObject.export() had been called on its result. Otherwise, the respective part of the key is returned as a KeyObject.

When encoding public keys, it is recommended to use 'spki'. When encoding private keys, it is recommended to use 'pkcs8' with a strong passphrase, and to keep the passphrase confidential.

const {
  generateKeyPairSync,
} = await import('node:crypto');

const {
  publicKey,
  privateKey,
} = generateKeyPairSync('rsa', {
  modulusLength: 4096,
  publicKeyEncoding: {
    type: 'spki',
    format: 'pem',
  },
  privateKeyEncoding: {
    type: 'pkcs8',
    format: 'pem',
    cipher: 'aes-256-cbc',
    passphrase: 'top secret',
  },
});

The return value { publicKey, privateKey } represents the generated key pair. When PEM encoding was selected, the respective key will be a string, otherwise it will be a buffer containing the data encoded as DER.

M

crypto.generateKeySync

History
crypto.generateKeySync(type, options)
  • type: <string> The intended use of the generated secret key. Currently accepted values are 'hmac' and 'aes'.
  • options: <Object>
    • length: <number> The bit length of the key to generate.
      • If type is 'hmac', the minimum is 8, and the maximum length is 231-1. If the value is not a multiple of 8, the generated key will be truncated to Math.floor(length / 8).
      • If type is 'aes', the length must be one of 128, 192, or 256.
  • Returns: <KeyObject>

Synchronously generates a new random secret key of the given length. The type will determine which validations will be performed on the length.

const {
  generateKeySync,
} = await import('node:crypto');

const key = generateKeySync('hmac', { length: 512 });
console.log(key.export().toString('hex'));  // e89..........41e

The size of a generated HMAC key should not exceed the block size of the underlying hash function. See crypto.createHmac() for more information.

M

crypto.generatePrime

crypto.generatePrime(size, options?, callback)
PropertyTypeDescription
size<number>The size (in bits) of the prime to generate.
options<Object>-
add<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>-
rem<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>-
safe<boolean>Default: false.
bigint<boolean>When true, the generated prime is returned as a bigint.
callback<Function>-

Generates a pseudorandom prime of size bits.

If options.safe is true, the prime will be a safe prime -- that is, (prime - 1) / 2 will also be a prime.

The options.add and options.rem parameters can be used to enforce additional requirements, e.g., for Diffie-Hellman:

  • If options.add and options.rem are both set, the prime will satisfy the condition that prime % add = rem.
  • If only options.add is set and options.safe is not true, the prime will satisfy the condition that prime % add = 1.
  • If only options.add is set and options.safe is set to true, the prime will instead satisfy the condition that prime % add = 3. This is necessary because prime % add = 1 for options.add > 2 would contradict the condition enforced by options.safe.
  • options.rem is ignored if options.add is not given.

Both options.add and options.rem must be encoded as big-endian sequences if given as an ArrayBuffer, SharedArrayBuffer, TypedArray, Buffer, or DataView.

By default, the prime is encoded as a big-endian sequence of octets in an <ArrayBuffer>. If the bigint option is true, then a <bigint> is provided.

The size of the prime will have a direct impact on how long it takes to generate the prime. The larger the size, the longer it will take. Because we use OpenSSL's BN_generate_prime_ex function, which provides only minimal control over our ability to interrupt the generation process, it is not recommended to generate overly large primes, as doing so may make the process unresponsive.

M

crypto.generatePrimeSync

History
crypto.generatePrimeSync(size, options?): ArrayBuffer|bigint
PropertyTypeDescription
size<number>The size (in bits) of the prime to generate.
options<Object>-
add<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>-
rem<ArrayBuffer> | <SharedArrayBuffer> | <TypedArray> | <Buffer> | <DataView> | <bigint>-
safe<boolean>Default: false.
bigint<boolean>When true, the generated prime is returned as a bigint.
Returns<ArrayBuffer> | <bigint>-

Generates a pseudorandom prime of size bits.

If options.safe is true, the prime will be a safe prime -- that is, (prime - 1) / 2 will also be a prime.

The options.add and options.rem parameters can be used to enforce additional requirements, e.g., for Diffie-Hellman:

  • If options.add and options.rem are both set, the prime will satisfy the condition that prime % add = rem.
  • If only options.add is set and options.safe is not true, the prime will satisfy the condition that prime % add = 1.
  • If only options.add is set and options.safe is set to true, the prime will instead satisfy the condition that prime % add = 3. This is necessary because prime % add = 1 for options.add > 2 would contradict the condition enforced by options.safe.
  • options.rem is ignored if options.add is not given.

Both options.add and options.rem must be encoded as big-endian sequences if given as an ArrayBuffer, SharedArrayBuffer, TypedArray, Buffer, or DataView.

By default, the prime is encoded as a big-endian sequence of octets in an <ArrayBuffer>. If the bigint option is true, then a <bigint> is provided.

The size of the prime will have a direct impact on how long it takes to generate the prime. The larger the size, the longer it will take. Because we use OpenSSL's BN_generate_prime_ex function, which provides only minimal control over our ability to interrupt the generation process, it is not recommended to generate overly large primes, as doing so may make the process unresponsive.

M

crypto.getCipherInfo

History
crypto.getCipherInfo(nameOrNid, options?)
  • nameOrNid: <string> | <number> The name or nid of the cipher to query.
  • options: <Object>
  • Returns: <Object>
    PropertyTypeDescription
    name<string>The name of the cipher
    nid<number>The nid of the cipher
    blockSize<number>The block size of the cipher in bytes. This property is omitted when mode is 'stream'.
    ivLength<number>The expected or default initialization vector length in bytes. This property is omitted if the cipher does not use an initialization vector.
    keyLength<number>The expected or default key length in bytes.
    mode<string>The cipher mode. One of 'cbc', 'ccm', 'cfb', 'ctr', 'ecb', 'gcm', 'ocb', 'ofb', 'stream', 'wrap', 'xts'.

Returns information about a given cipher.

Some ciphers accept variable length keys and initialization vectors. By default, the crypto.getCipherInfo() method will return the default values for these ciphers. To test if a given key length or iv length is acceptable for given cipher, use the keyLength and ivLength options. If the given values are unacceptable, undefined will be returned.

M

crypto.getCiphers

History
crypto.getCiphers(): string[]
PropertyTypeDescription
Returns<string[]>An array with the names of the supported cipher algorithms.
const {
  getCiphers,
} = await import('node:crypto');

console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]
M

crypto.getCurves

History
crypto.getCurves(): string[]
PropertyTypeDescription
Returns<string[]>An array with the names of the supported elliptic curves.
const {
  getCurves,
} = await import('node:crypto');

console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]
M

crypto.getDiffieHellman

History
crypto.getDiffieHellman(groupName): DiffieHellmanGroup
PropertyTypeDescription
groupName<string>-
Returns<DiffieHellmanGroup>-

Creates a predefined DiffieHellmanGroup key exchange object. The supported groups are listed in the documentation for DiffieHellmanGroup.

The returned object mimics the interface of objects created by crypto.createDiffieHellman(), but will not allow changing the keys (with diffieHellman.setPublicKey(), for example). The advantage of using this method is that the parties do not have to generate nor exchange a group modulus beforehand, saving both processor and communication time.

Example (obtaining a shared secret):

const {
  getDiffieHellman,
} = await import('node:crypto');
const alice = getDiffieHellman('modp14');
const bob = getDiffieHellman('modp14');

alice.generateKeys();
bob.generateKeys();

const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');

/* aliceSecret and bobSecret should be the same */
console.log(aliceSecret === bobSecret);
M

crypto.getFips

History
crypto.getFips(): number
PropertyTypeDescription
Returns<number>1 if and only if a FIPS compliant crypto provider is currently in use, 0 otherwise. A future semver-major release may change the return type of this API to a <boolean>.
M

crypto.getHashes

History
crypto.getHashes(): string[]
PropertyTypeDescription
Returns<string[]>An array of the names of the supported hash algorithms, such as 'RSA-SHA256'. Hash algorithms are also called "digest" algorithms.
const {
  getHashes,
} = await import('node:crypto');

console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]
M

crypto.getRandomValues

History
crypto.getRandomValues(typedArray): Buffer|TypedArray|DataView|ArrayBuffer
PropertyTypeDescription
typedArray<Buffer> | <TypedArray> | <DataView> | <ArrayBuffer>-
Returns<Buffer> | <TypedArray> | <DataView> | <ArrayBuffer>Returns typedArray.

A convenient alias for crypto.webcrypto.getRandomValues(). This implementation is not compliant with the Web Crypto spec, to write web-compatible code use crypto.webcrypto.getRandomValues() instead.

M

crypto.hash

History
crypto.hash(algorithm, data, options?): string|Buffer
Stability: 1.2Release candidate
PropertyTypeDescription
algorithm<string> | <undefined>-
data<string> | <Buffer> | <TypedArray> | <DataView>When data is a string, it will be encoded as UTF-8 before being hashed. If a different input encoding is desired for a string input, user could encode the string into a TypedArray using either TextEncoder or Buffer.from() and passing the encoded TypedArray into this API instead.
options<Object> | <string>-
outputEncoding<string>Encoding used to encode the returned digest. Default: 'hex'.
outputLength<number>For XOF hash functions such as 'shake256', the outputLength option can be used to specify the desired output length in bytes.
Returns<string> | <Buffer>-

A utility for creating one-shot hash digests of data. It can be faster than the object-based crypto.createHash() when hashing a smaller amount of data (<= 5MB) that's readily available. If the data can be big or if it is streamed, it's still recommended to use crypto.createHash() instead.

The algorithm is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are 'sha256', 'sha512', etc. On recent releases of OpenSSL, openssl list -digest-algorithms will display the available digest algorithms.

If options is a string, then it specifies the outputEncoding.

Example:

const crypto = require('node:crypto');
const { Buffer } = require('node:buffer');

// Hashing a string and return the result as a hex-encoded string.
const string = 'Node.js';
// 10b3493287f831e81a438811a1ffba01f8cec4b7
console.log(crypto.hash('sha1', string));

// Encode a base64-encoded string into a Buffer, hash it and return
// the result as a buffer.
const base64 = 'Tm9kZS5qcw==';
// <Buffer 10 b3 49 32 87 f8 31 e8 1a 43 88 11 a1 ff ba 01 f8 ce c4 b7>
console.log(crypto.hash('sha1', Buffer.from(base64, 'base64'), 'buffer'));
M

crypto.hkdf

crypto.hkdf(digest, ikm, salt, info, keylen, callback)
PropertyTypeDescription
digest<string>The digest algorithm to use.
ikm<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject>The input keying material. Must be provided but can be zero-length.
salt<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>The salt value. Must be provided but can be zero-length.
info<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.
keylen<number>The length of the key to generate. Must be greater than 0. The maximum allowable value is 255 times the number of bytes produced by the selected digest function (e.g. sha512 generates 64-byte hashes, making the maximum HKDF output 16320 bytes).
callback<Function>-
err<Error>-
derivedKey<ArrayBuffer>-

HKDF is a simple key derivation function defined in RFC 5869. The given ikm, salt and info are used with the digest to derive a key of keylen bytes.

The supplied callback function is called with two arguments: err and derivedKey. If an errors occurs while deriving the key, err will be set; otherwise err will be null. The successfully generated derivedKey will be passed to the callback as an <ArrayBuffer>. An error will be thrown if any of the input arguments specify invalid values or types.

import { Buffer } from 'node:buffer';
const {
  hkdf,
} = await import('node:crypto');

hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => {
  if (err) throw err;
  console.log(Buffer.from(derivedKey).toString('hex'));  // '24156e2...5391653'
});
M

crypto.hkdfSync

crypto.hkdfSync(digest, ikm, salt, info, keylen): ArrayBuffer
PropertyTypeDescription
digest<string>The digest algorithm to use.
ikm<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject>The input keying material. Must be provided but can be zero-length.
salt<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>The salt value. Must be provided but can be zero-length.
info<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.
keylen<number>The length of the key to generate. Must be greater than 0. The maximum allowable value is 255 times the number of bytes produced by the selected digest function (e.g. sha512 generates 64-byte hashes, making the maximum HKDF output 16320 bytes).
Returns<ArrayBuffer>-

Provides a synchronous HKDF key derivation function as defined in RFC 5869. The given ikm, salt and info are used with the digest to derive a key of keylen bytes.

The successfully generated derivedKey will be returned as an <ArrayBuffer>.

An error will be thrown if any of the input arguments specify invalid values or types, or if the derived key cannot be generated.

import { Buffer } from 'node:buffer';
const {
  hkdfSync,
} = await import('node:crypto');

const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64);
console.log(Buffer.from(derivedKey).toString('hex'));  // '24156e2...5391653'
M

crypto.pbkdf2

crypto.pbkdf2(password, salt, iterations, keylen, digest, callback)
PropertyTypeDescription
password<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
salt<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
iterations<number>-
keylen<number>-
digest<string>-
callback<Function>-
err<Error>-
derivedKey<Buffer>-

Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by digest is applied to derive a key of the requested byte length (keylen) from the password, salt and iterations.

The supplied callback function is called with two arguments: err and derivedKey. If an error occurs while deriving the key, err will be set; otherwise err will be null. By default, the successfully generated derivedKey will be passed to the callback as a Buffer. An error will be thrown if any of the input arguments specify invalid values or types.

The iterations argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete.

The salt should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.

When passing strings for password or salt, please consider caveats when using strings as inputs to cryptographic APIs.

const {
  pbkdf2,
} = await import('node:crypto');

pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'
});

An array of supported digest functions can be retrieved using crypto.getHashes().

This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the UV_THREADPOOL_SIZE documentation for more information.

M

crypto.pbkdf2Sync

crypto.pbkdf2Sync(password, salt, iterations, keylen, digest): Buffer
PropertyTypeDescription
password<string> | <Buffer> | <TypedArray> | <DataView>-
salt<string> | <Buffer> | <TypedArray> | <DataView>-
iterations<number>-
keylen<number>-
digest<string>-
Returns<Buffer>-

Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by digest is applied to derive a key of the requested byte length (keylen) from the password, salt and iterations.

If an error occurs an Error will be thrown, otherwise the derived key will be returned as a Buffer.

The iterations argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete.

The salt should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.

When passing strings for password or salt, please consider caveats when using strings as inputs to cryptographic APIs.

const {
  pbkdf2Sync,
} = await import('node:crypto');

const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');
console.log(key.toString('hex'));  // '3745e48...08d59ae'

An array of supported digest functions can be retrieved using crypto.getHashes().

M

crypto.privateDecrypt

crypto.privateDecrypt(privateKey, buffer): Buffer
PropertyTypeDescription
privateKey<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>-
oaepHash<string>The hash function to use for OAEP padding and MGF1. Default: 'sha1'
oaepLabel<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>The label to use for OAEP padding. If not specified, no label is used.
padding<crypto.constants>An optional padding value defined in crypto.constants, which may be: crypto.constants.RSA_NO_PADDING, crypto.constants.RSA_PKCS1_PADDING, or crypto.constants.RSA_PKCS1_OAEP_PADDING.
buffer<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
Returns<Buffer>A new Buffer with the decrypted content.

Decrypts buffer with privateKey. buffer was previously encrypted using the corresponding public key, for example using crypto.publicEncrypt().

If privateKey is not a KeyObject, this function behaves as if privateKey had been passed to crypto.createPrivateKey(). If it is an object, the padding property can be passed. Otherwise, this function uses RSA_PKCS1_OAEP_PADDING.

Using crypto.constants.RSA_PKCS1_PADDING in crypto.privateDecrypt() requires OpenSSL to support implicit rejection (rsa_pkcs1_implicit_rejection). If the version of OpenSSL used by Node.js does not support this feature, attempting to use RSA_PKCS1_PADDING will fail.

M

crypto.privateEncrypt

crypto.privateEncrypt(privateKey, buffer): Buffer
PropertyTypeDescription
privateKey<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>-
key<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>A PEM encoded private key.
passphrase<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>An optional passphrase for the private key.
padding<crypto.constants>An optional padding value defined in crypto.constants, which may be: crypto.constants.RSA_NO_PADDING or crypto.constants.RSA_PKCS1_PADDING.
encoding<string>The string encoding to use when buffer, key, or passphrase are strings.
buffer<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
Returns<Buffer>A new Buffer with the encrypted content.

Encrypts buffer with privateKey. The returned data can be decrypted using the corresponding public key, for example using crypto.publicDecrypt().

If privateKey is not a KeyObject, this function behaves as if privateKey had been passed to crypto.createPrivateKey(). If it is an object, the padding property can be passed. Otherwise, this function uses RSA_PKCS1_PADDING.

M

crypto.publicDecrypt

crypto.publicDecrypt(key, buffer): Buffer
PropertyTypeDescription
key<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>-
passphrase<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>An optional passphrase for the private key.
padding<crypto.constants>An optional padding value defined in crypto.constants, which may be: crypto.constants.RSA_NO_PADDING or crypto.constants.RSA_PKCS1_PADDING.
encoding<string>The string encoding to use when buffer, key, or passphrase are strings.
buffer<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
Returns<Buffer>A new Buffer with the decrypted content.

Decrypts buffer with key.buffer was previously encrypted using the corresponding private key, for example using crypto.privateEncrypt().

If key is not a KeyObject, this function behaves as if key had been passed to crypto.createPublicKey(). If it is an object, the padding property can be passed. Otherwise, this function uses RSA_PKCS1_PADDING.

Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.

M

crypto.publicEncrypt

crypto.publicEncrypt(key, buffer): Buffer
PropertyTypeDescription
key<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>-
key<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>A PEM encoded public or private key, <KeyObject>, or <CryptoKey>.
oaepHash<string>The hash function to use for OAEP padding and MGF1. Default: 'sha1'
oaepLabel<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>The label to use for OAEP padding. If not specified, no label is used.
passphrase<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>An optional passphrase for the private key.
padding<crypto.constants>An optional padding value defined in crypto.constants, which may be: crypto.constants.RSA_NO_PADDING, crypto.constants.RSA_PKCS1_PADDING, or crypto.constants.RSA_PKCS1_OAEP_PADDING.
encoding<string>The string encoding to use when buffer, key, oaepLabel, or passphrase are strings.
buffer<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
Returns<Buffer>A new Buffer with the encrypted content.

Encrypts the content of buffer with key and returns a new Buffer with encrypted content. The returned data can be decrypted using the corresponding private key, for example using crypto.privateDecrypt().

If key is not a KeyObject, this function behaves as if key had been passed to crypto.createPublicKey(). If it is an object, the padding property can be passed. Otherwise, this function uses RSA_PKCS1_OAEP_PADDING.

Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key.

M

crypto.randomBytes

crypto.randomBytes(size, callback?): Buffer
PropertyTypeDescription
size<number>The number of bytes to generate. The size must not be larger than 2**31 - 1.
callback<Function>-
Returns<Buffer>if the callback function is not provided.

Generates cryptographically strong pseudorandom data. The size argument is a number indicating the number of bytes to generate.

If a callback function is provided, the bytes are generated asynchronously and the callback function is invoked with two arguments: err and buf. If an error occurs, err will be an Error object; otherwise it is null. The buf argument is a Buffer containing the generated bytes.

// Asynchronous
const {
  randomBytes,
} = await import('node:crypto');

randomBytes(256, (err, buf) => {
  if (err) throw err;
  console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);
});

If the callback function is not provided, the random bytes are generated synchronously and returned as a Buffer. An error will be thrown if there is a problem generating the bytes.

// Synchronous
const {
  randomBytes,
} = await import('node:crypto');

const buf = randomBytes(256);
console.log(
  `${buf.length} bytes of random data: ${buf.toString('hex')}`);

The crypto.randomBytes() method will not complete until there is sufficient entropy available. This should normally never take longer than a few milliseconds. The only time when generating the random bytes may conceivably block for a longer period of time is right after boot, when the whole system is still low on entropy.

This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the UV_THREADPOOL_SIZE documentation for more information.

The asynchronous version of crypto.randomBytes() is carried out in a single threadpool request. To minimize threadpool task length variation, partition large randomBytes requests when doing so as part of fulfilling a client request.

M

crypto.randomFill

crypto.randomFill(buffer, offset?, size?, callback)
PropertyTypeDescription
buffer<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>Must be supplied. The size of the provided buffer must not be larger than 2**31 - 1.
offset<number>Default: 0
size<number>Default: buffer.length - offset. The size must not be larger than 2**31 - 1.
callback<Function>function(err, buf) {}.

This function is similar to crypto.randomBytes() but requires the first argument to be a Buffer that will be filled. It also requires that a callback is passed in.

If the callback function is not provided, an error will be thrown.

import { Buffer } from 'node:buffer';
const { randomFill } = await import('node:crypto');

const buf = Buffer.alloc(10);
randomFill(buf, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

randomFill(buf, 5, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

// The above is equivalent to the following:
randomFill(buf, 5, 5, (err, buf) => {
  if (err) throw err;
  console.log(buf.toString('hex'));
});

Any ArrayBuffer, TypedArray, or DataView instance may be passed as buffer.

While this includes instances of Float32Array and Float64Array, this function should not be used to generate random floating-point numbers. The result may contain +Infinity, -Infinity, and NaN, and even if the array contains finite numbers only, they are not drawn from a uniform random distribution and have no meaningful lower or upper bounds.

import { Buffer } from 'node:buffer';
const { randomFill } = await import('node:crypto');

const a = new Uint32Array(10);
randomFill(a, (err, buf) => {
  if (err) throw err;
  console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
    .toString('hex'));
});

const b = new DataView(new ArrayBuffer(10));
randomFill(b, (err, buf) => {
  if (err) throw err;
  console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
    .toString('hex'));
});

const c = new ArrayBuffer(10);
randomFill(c, (err, buf) => {
  if (err) throw err;
  console.log(Buffer.from(buf).toString('hex'));
});

This API uses libuv's threadpool, which can have surprising and negative performance implications for some applications; see the UV_THREADPOOL_SIZE documentation for more information.

The asynchronous version of crypto.randomFill() is carried out in a single threadpool request. To minimize threadpool task length variation, partition large randomFill requests when doing so as part of fulfilling a client request.

M

crypto.randomFillSync

History
crypto.randomFillSync(buffer, offset?, size?): ArrayBuffer|Buffer|TypedArray|DataView
PropertyTypeDescription
buffer<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>Must be supplied. The size of the provided buffer must not be larger than 2**31 - 1.
offset<number>Default: 0
size<number>Default: buffer.length - offset. The size must not be larger than 2**31 - 1.
Returns<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>The object passed as buffer argument.

Synchronous version of crypto.randomFill().

import { Buffer } from 'node:buffer';
const { randomFillSync } = await import('node:crypto');

const buf = Buffer.alloc(10);
console.log(randomFillSync(buf).toString('hex'));

randomFillSync(buf, 5);
console.log(buf.toString('hex'));

// The above is equivalent to the following:
randomFillSync(buf, 5, 5);
console.log(buf.toString('hex'));

Any ArrayBuffer, TypedArray or DataView instance may be passed as buffer.

import { Buffer } from 'node:buffer';
const { randomFillSync } = await import('node:crypto');

const a = new Uint32Array(10);
console.log(Buffer.from(randomFillSync(a).buffer,
                        a.byteOffset, a.byteLength).toString('hex'));

const b = new DataView(new ArrayBuffer(10));
console.log(Buffer.from(randomFillSync(b).buffer,
                        b.byteOffset, b.byteLength).toString('hex'));

const c = new ArrayBuffer(10);
console.log(Buffer.from(randomFillSync(c)).toString('hex'));
M

crypto.randomInt

crypto.randomInt(min?, max, callback?)
PropertyTypeDescription
min<integer>Start of random range (inclusive). Default: 0.
max<integer>End of random range (exclusive).
callback<Function>function(err, n) {}.

Return a random integer n such that min <= n < max. This implementation avoids modulo bias.

The range (max - min) must be less than 248. min and max must be safe integers.

If the callback function is not provided, the random integer is generated synchronously.

// Asynchronous
const {
  randomInt,
} = await import('node:crypto');

randomInt(3, (err, n) => {
  if (err) throw err;
  console.log(`Random number chosen from (0, 1, 2): ${n}`);
});
M

crypto.randomUUID

History
crypto.randomUUID(options?): string
PropertyTypeDescription
options<Object>-
disableEntropyCache<boolean>By default, to improve performance, Node.js generates and caches enough random data to generate up to 128 random UUIDs. To generate a UUID without using the cache, set disableEntropyCache to true. Default: false.
Returns<string>-

Generates a random RFC 4122 version 4 UUID. The UUID is generated using a cryptographic pseudorandom number generator.

M

crypto.scrypt

crypto.scrypt(password, salt, keylen, options?, callback)
PropertyTypeDescription
password<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
salt<string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
keylen<number>-
options<Object>-
cost<number>CPU/memory cost parameter. Must be a power of two greater than one. Default: 16384.
blockSize<number>Block size parameter. Default: 8.
parallelization<number>Parallelization parameter. Default: 1.
N<number>Alias for cost. Only one of both may be specified.
r<number>Alias for blockSize. Only one of both may be specified.
p<number>Alias for parallelization. Only one of both may be specified.
maxmem<number>Memory upper bound. It is an error when (approximately) 128 * N * r > maxmem. Default: 32 * 1024 * 1024.
callback<Function>-
err<Error>-
derivedKey<Buffer>-

Provides an asynchronous scrypt implementation. Scrypt is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding.

The salt should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.

When passing strings for password or salt, please consider caveats when using strings as inputs to cryptographic APIs.

The callback function is called with two arguments: err and derivedKey. err is an exception object when key derivation fails, otherwise err is null. derivedKey is passed to the callback as a Buffer.

An exception is thrown when any of the input arguments specify invalid values or types.

const {
  scrypt,
} = await import('node:crypto');

// Using the factory defaults.
scrypt('password', 'salt', 64, (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...08d59ae'
});
// Using a custom N parameter. Must be a power of two.
scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => {
  if (err) throw err;
  console.log(derivedKey.toString('hex'));  // '3745e48...aa39b34'
});
M

crypto.scryptSync

crypto.scryptSync(password, salt, keylen, options?): Buffer
PropertyTypeDescription
password<string> | <Buffer> | <TypedArray> | <DataView>-
salt<string> | <Buffer> | <TypedArray> | <DataView>-
keylen<number>-
options<Object>-
cost<number>CPU/memory cost parameter. Must be a power of two greater than one. Default: 16384.
blockSize<number>Block size parameter. Default: 8.
parallelization<number>Parallelization parameter. Default: 1.
N<number>Alias for cost. Only one of both may be specified.
r<number>Alias for blockSize. Only one of both may be specified.
p<number>Alias for parallelization. Only one of both may be specified.
maxmem<number>Memory upper bound. It is an error when (approximately) 128 * N * r > maxmem. Default: 32 * 1024 * 1024.
Returns<Buffer>-

Provides a synchronous scrypt implementation. Scrypt is a password-based key derivation function that is designed to be expensive computationally and memory-wise in order to make brute-force attacks unrewarding.

The salt should be as unique as possible. It is recommended that a salt is random and at least 16 bytes long. See NIST SP 800-132 for details.

When passing strings for password or salt, please consider caveats when using strings as inputs to cryptographic APIs.

An exception is thrown when key derivation fails, otherwise the derived key is returned as a Buffer.

An exception is thrown when any of the input arguments specify invalid values or types.

const {
  scryptSync,
} = await import('node:crypto');
// Using the factory defaults.

const key1 = scryptSync('password', 'salt', 64);
console.log(key1.toString('hex'));  // '3745e48...08d59ae'
// Using a custom N parameter. Must be a power of two.
const key2 = scryptSync('password', 'salt', 64, { N: 1024 });
console.log(key2.toString('hex'));  // '3745e48...aa39b34'
M

crypto.secureHeapUsed

History
crypto.secureHeapUsed(): Object
PropertyTypeDescription
Returns<Object>-
total<number>The total allocated secure heap size as specified using the --secure-heap=n command-line flag.
min<number>The minimum allocation from the secure heap as specified using the --secure-heap-min command-line flag.
used<number>The total number of bytes currently allocated from the secure heap.
utilization<number>The calculated ratio of used to total allocated bytes.
M

crypto.setEngine

crypto.setEngine(engine, flags?)
PropertyTypeDescription
engine<string>-
flags<crypto.constants>Default: crypto.constants.ENGINE_METHOD_ALL

Load and set the engine for some or all OpenSSL functions (selected by flags). Support for custom engines in OpenSSL is deprecated from OpenSSL 3.

engine could be either an id or a path to the engine's shared library.

The optional flags argument uses ENGINE_METHOD_ALL by default. The flags is a bit field taking one of or a mix of the following flags (defined in crypto.constants):

  • crypto.constants.ENGINE_METHOD_RSA
  • crypto.constants.ENGINE_METHOD_DSA
  • crypto.constants.ENGINE_METHOD_DH
  • crypto.constants.ENGINE_METHOD_RAND
  • crypto.constants.ENGINE_METHOD_EC
  • crypto.constants.ENGINE_METHOD_CIPHERS
  • crypto.constants.ENGINE_METHOD_DIGESTS
  • crypto.constants.ENGINE_METHOD_PKEY_METHS
  • crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS
  • crypto.constants.ENGINE_METHOD_ALL
  • crypto.constants.ENGINE_METHOD_NONE
M

crypto.setFips

History
crypto.setFips(bool)
PropertyTypeDescription
bool<boolean>true to enable FIPS mode.

Enables the FIPS compliant crypto provider in a FIPS-enabled Node.js build. Throws an error if FIPS mode is not available.

M

crypto.sign

crypto.sign(algorithm, data, key, callback?): Buffer
PropertyTypeDescription
algorithm<string> | <null> | <undefined>-
data<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
key<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>-
callback<Function>-
err<Error>-
signature<Buffer>-
Returns<Buffer>if the callback function is not provided.

Calculates and returns the signature for data using the given private key and algorithm. If algorithm is null or undefined, then the algorithm is dependent upon the key type (especially Ed25519 and Ed448).

If key is not a KeyObject, this function behaves as if key had been passed to crypto.createPrivateKey(). If it is an object, the following additional properties can be passed:

PropertyTypeDescription
dsaEncoding<string>For DSA and ECDSA, this option specifies the format of the generated signature. It can be one of the following:
padding<integer>Optional padding value for RSA, one of the following:
saltLength<integer>Salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN (default) sets it to the maximum permissible value.

If the callback function is provided this function uses libuv's threadpool.

P

crypto.subtle

History
PropertyTypeDescription
-<SubtleCrypto>-

A convenient alias for crypto.webcrypto.subtle.

M

crypto.timingSafeEqual

crypto.timingSafeEqual(a, b): boolean

This function compares the underlying bytes that represent the given ArrayBuffer, TypedArray, or DataView instances using a constant-time algorithm.

This function does not leak timing information that would allow an attacker to guess one of the values. This is suitable for comparing HMAC digests or secret values like authentication cookies or capability urls.

a and b must both be Buffers, TypedArrays, or DataViews, and they must have the same byte length. An error is thrown if a and b have different byte lengths.

If at least one of a and b is a TypedArray with more than one byte per entry, such as Uint16Array, the result will be computed using the platform byte order.

When both of the inputs are Float32Arrays or Float64Arrays, this function might return unexpected results due to IEEE 754 encoding of floating-point numbers. In particular, neither x === y nor Object.is(x, y) implies that the byte representations of two floating-point numbers x and y are equal.

Use of crypto.timingSafeEqual does not guarantee that the surrounding code is timing-safe. Care should be taken to ensure that the surrounding code does not introduce timing vulnerabilities.

M

crypto.verify

crypto.verify(algorithm, data, key, signature, callback?): boolean
PropertyTypeDescription
algorithm<string> | <null> | <undefined>-
data<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
key<Object> | <string> | <ArrayBuffer> | <Buffer> | <TypedArray> | <DataView> | <KeyObject> | <CryptoKey>-
signature<ArrayBuffer> | <Buffer> | <TypedArray> | <DataView>-
callback<Function>-
err<Error>-
result<boolean>-
Returns<boolean>true or false depending on the validity of the signature for the data and public key if the callback function is not provided.

Verifies the given signature for data using the given key and algorithm. If algorithm is null or undefined, then the algorithm is dependent upon the key type (especially Ed25519 and Ed448).

If key is not a KeyObject, this function behaves as if key had been passed to crypto.createPublicKey(). If it is an object, the following additional properties can be passed:

PropertyTypeDescription
dsaEncoding<string>For DSA and ECDSA, this option specifies the format of the signature. It can be one of the following:
padding<integer>Optional padding value for RSA, one of the following:
saltLength<integer>Salt length for when padding is RSA_PKCS1_PSS_PADDING. The special value crypto.constants.RSA_PSS_SALTLEN_DIGEST sets the salt length to the digest size, crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN (default) sets it to the maximum permissible value.

The signature argument is the previously calculated signature for the data.

Because public keys can be derived from private keys, a private key or a public key may be passed for key.

If the callback function is provided this function uses libuv's threadpool.

P

crypto.webcrypto

History

Type: <Crypto> An implementation of the Web Crypto API standard.

See the Web Crypto API documentation for details.

Notes

Using strings as inputs to cryptographic APIs

For historical reasons, many cryptographic APIs provided by Node.js accept strings as inputs where the underlying cryptographic algorithm works on byte sequences. These instances include plaintexts, ciphertexts, symmetric keys, initialization vectors, passphrases, salts, authentication tags, and additional authenticated data.

When passing strings to cryptographic APIs, consider the following factors.

  • Not all byte sequences are valid UTF-8 strings. Therefore, when a byte sequence of length n is derived from a string, its entropy is generally lower than the entropy of a random or pseudorandom n byte sequence. For example, no UTF-8 string will result in the byte sequence c0 af. Secret keys should almost exclusively be random or pseudorandom byte sequences.

  • Similarly, when converting random or pseudorandom byte sequences to UTF-8 strings, subsequences that do not represent valid code points may be replaced by the Unicode replacement character (U+FFFD). The byte representation of the resulting Unicode string may, therefore, not be equal to the byte sequence that the string was created from.

    const original = [0xc0, 0xaf];
    const bytesAsString = Buffer.from(original).toString('utf8');
    const stringAsBytes = Buffer.from(bytesAsString, 'utf8');
    console.log(stringAsBytes);
    // Prints '<Buffer ef bf bd ef bf bd>'.
    

    The outputs of ciphers, hash functions, signature algorithms, and key derivation functions are pseudorandom byte sequences and should not be used as Unicode strings.

  • When strings are obtained from user input, some Unicode characters can be represented in multiple equivalent ways that result in different byte sequences. For example, when passing a user passphrase to a key derivation function, such as PBKDF2 or scrypt, the result of the key derivation function depends on whether the string uses composed or decomposed characters. Node.js does not normalize character representations. Developers should consider using String.prototype.normalize() on user inputs before passing them to cryptographic APIs.

Legacy streams API (prior to Node.js 0.10)

The Crypto module was added to Node.js before there was the concept of a unified Stream API, and before there were Buffer objects for handling binary data. As such, many crypto classes have methods not typically found on other Node.js classes that implement the streams API (e.g. update(), final(), or digest()). Also, many methods accepted and returned 'latin1' encoded strings by default rather than Buffers. This default was changed after Node.js v0.8 to use Buffer objects by default instead.

Support for weak or compromised algorithms

The node:crypto module still supports some algorithms which are already compromised and are not recommended for use. The API also allows the use of ciphers and hashes with a small key size that are too weak for safe use.

Users should take full responsibility for selecting the crypto algorithm and key size according to their security requirements.

Based on the recommendations of NIST SP 800-131A:

  • MD5 and SHA-1 are no longer acceptable where collision resistance is required such as digital signatures.
  • The key used with RSA, DSA, and DH algorithms is recommended to have at least 2048 bits and that of the curve of ECDSA and ECDH at least 224 bits, to be safe to use for several years.
  • The DH groups of modp1, modp2 and modp5 have a key size smaller than 2048 bits and are not recommended.

See the reference for other recommendations and details.

Some algorithms that have known weaknesses and are of little relevance in practice are only available through the legacy provider, which is not enabled by default.

CCM mode

CCM is one of the supported AEAD algorithms. Applications which use this mode must adhere to certain restrictions when using the cipher API:

  • The authentication tag length must be specified during cipher creation by setting the authTagLength option and must be one of 4, 6, 8, 10, 12, 14 or 16 bytes.
  • The length of the initialization vector (nonce) N must be between 7 and 13 bytes (7 ≤ N ≤ 13).
  • The length of the plaintext is limited to 2 ** (8 * (15 - N)) bytes.
  • When decrypting, the authentication tag must be set via setAuthTag() before calling update(). Otherwise, decryption will fail and final() will throw an error in compliance with section 2.6 of RFC 3610.
  • Using stream methods such as write(data), end(data) or pipe() in CCM mode might fail as CCM cannot handle more than one chunk of data per instance.
  • When passing additional authenticated data (AAD), the length of the actual message in bytes must be passed to setAAD() via the plaintextLength option. Many crypto libraries include the authentication tag in the ciphertext, which means that they produce ciphertexts of the length plaintextLength + authTagLength. Node.js does not include the authentication tag, so the ciphertext length is always plaintextLength. This is not necessary if no AAD is used.
  • As CCM processes the whole message at once, update() must be called exactly once.
  • Even though calling update() is sufficient to encrypt/decrypt the message, applications must call final() to compute or verify the authentication tag.
import { Buffer } from 'node:buffer';
const {
  createCipheriv,
  createDecipheriv,
  randomBytes,
} = await import('node:crypto');

const key = 'keykeykeykeykeykeykeykey';
const nonce = randomBytes(12);

const aad = Buffer.from('0123456789', 'hex');

const cipher = createCipheriv('aes-192-ccm', key, nonce, {
  authTagLength: 16,
});
const plaintext = 'Hello world';
cipher.setAAD(aad, {
  plaintextLength: Buffer.byteLength(plaintext),
});
const ciphertext = cipher.update(plaintext, 'utf8');
cipher.final();
const tag = cipher.getAuthTag();

// Now transmit { ciphertext, nonce, tag }.

const decipher = createDecipheriv('aes-192-ccm', key, nonce, {
  authTagLength: 16,
});
decipher.setAuthTag(tag);
decipher.setAAD(aad, {
  plaintextLength: ciphertext.length,
});
const receivedPlaintext = decipher.update(ciphertext, null, 'utf8');

try {
  decipher.final();
} catch (err) {
  throw new Error('Authentication failed!', { cause: err });
}

console.log(receivedPlaintext);

FIPS mode

When using OpenSSL 3, Node.js supports FIPS 140-2 when used with an appropriate OpenSSL 3 provider, such as the FIPS provider from OpenSSL 3 which can be installed by following the instructions in OpenSSL's FIPS README file.

For FIPS support in Node.js you will need:

  • A correctly installed OpenSSL 3 FIPS provider.
  • An OpenSSL 3 FIPS module configuration file.
  • An OpenSSL 3 configuration file that references the FIPS module configuration file.

Node.js will need to be configured with an OpenSSL configuration file that points to the FIPS provider. An example configuration file looks like this:

nodejs_conf = nodejs_init

.include /<absolute path>/fipsmodule.cnf

[nodejs_init]
providers = provider_sect

[provider_sect]
default = default_sect
# The fips section name should match the section name inside the
# included fipsmodule.cnf.
fips = fips_sect

[default_sect]
activate = 1

where fipsmodule.cnf is the FIPS module configuration file generated from the FIPS provider installation step:

openssl fipsinstall

Set the OPENSSL_CONF environment variable to point to your configuration file and OPENSSL_MODULES to the location of the FIPS provider dynamic library. e.g.

export OPENSSL_CONF=/<path to configuration file>/nodejs.cnf
export OPENSSL_MODULES=/<path to openssl lib>/ossl-modules

FIPS mode can then be enabled in Node.js either by:

  • Starting Node.js with --enable-fips or --force-fips command line flags.
  • Programmatically calling crypto.setFips(true).

Optionally FIPS mode can be enabled in Node.js via the OpenSSL configuration file. e.g.

nodejs_conf = nodejs_init

.include /<absolute path>/fipsmodule.cnf

[nodejs_init]
providers = provider_sect
alg_section = algorithm_sect

[provider_sect]
default = default_sect
# The fips section name should match the section name inside the
# included fipsmodule.cnf.
fips = fips_sect

[default_sect]
activate = 1

[algorithm_sect]
default_properties = fips=yes

Crypto constants

The following constants exported by crypto.constants apply to various uses of the node:crypto, node:tls, and node:https modules and are generally specific to OpenSSL.

OpenSSL options

See the list of SSL OP Flags for details.

ConstantDescription
SSL_OP_ALLApplies multiple bug workarounds within OpenSSL. See https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html for detail.
SSL_OP_ALLOW_NO_DHE_KEXInstructs OpenSSL to allow a non-[EC]DHE-based key exchange mode for TLS v1.3
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATIONAllows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html.
SSL_OP_CIPHER_SERVER_PREFERENCEAttempts to use the server's preferences instead of the client's when selecting a cipher. Behavior depends on protocol version. See https://www.openssl.org/docs/man3.0/man3/SSL_CTX_set_options.html.
SSL_OP_CISCO_ANYCONNECTInstructs OpenSSL to use Cisco's version identifier of DTLS_BAD_VER.
SSL_OP_COOKIE_EXCHANGEInstructs OpenSSL to turn on cookie exchange.
SSL_OP_CRYPTOPRO_TLSEXT_BUGInstructs OpenSSL to add server-hello extension from an early version of the cryptopro draft.
SSL_OP_DONT_INSERT_EMPTY_FRAGMENTSInstructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d.
SSL_OP_LEGACY_SERVER_CONNECTAllows initial connection to servers that do not support RI.
SSL_OP_NO_COMPRESSIONInstructs OpenSSL to disable support for SSL/TLS compression.
SSL_OP_NO_ENCRYPT_THEN_MACInstructs OpenSSL to disable encrypt-then-MAC.
SSL_OP_NO_QUERY_MTU
SSL_OP_NO_RENEGOTIATIONInstructs OpenSSL to disable renegotiation.
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATIONInstructs OpenSSL to always start a new session when performing renegotiation.
SSL_OP_NO_SSLv2Instructs OpenSSL to turn off SSL v2
SSL_OP_NO_SSLv3Instructs OpenSSL to turn off SSL v3
SSL_OP_NO_TICKETInstructs OpenSSL to disable use of RFC4507bis tickets.
SSL_OP_NO_TLSv1Instructs OpenSSL to turn off TLS v1
SSL_OP_NO_TLSv1_1Instructs OpenSSL to turn off TLS v1.1
SSL_OP_NO_TLSv1_2Instructs OpenSSL to turn off TLS v1.2
SSL_OP_NO_TLSv1_3Instructs OpenSSL to turn off TLS v1.3
SSL_OP_PRIORITIZE_CHACHAInstructs OpenSSL server to prioritize ChaCha20-Poly1305 when the client does. This option has no effect if SSL_OP_CIPHER_SERVER_PREFERENCE is not enabled.
SSL_OP_TLS_ROLLBACK_BUGInstructs OpenSSL to disable version rollback attack detection.

OpenSSL engine constants

ConstantDescription
ENGINE_METHOD_RSALimit engine usage to RSA
ENGINE_METHOD_DSALimit engine usage to DSA
ENGINE_METHOD_DHLimit engine usage to DH
ENGINE_METHOD_RANDLimit engine usage to RAND
ENGINE_METHOD_ECLimit engine usage to EC
ENGINE_METHOD_CIPHERSLimit engine usage to CIPHERS
ENGINE_METHOD_DIGESTSLimit engine usage to DIGESTS
ENGINE_METHOD_PKEY_METHSLimit engine usage to PKEY_METHS
ENGINE_METHOD_PKEY_ASN1_METHSLimit engine usage to PKEY_ASN1_METHS
ENGINE_METHOD_ALL
ENGINE_METHOD_NONE

Other OpenSSL constants

ConstantDescription
DH_CHECK_P_NOT_SAFE_PRIME
DH_CHECK_P_NOT_PRIME
DH_UNABLE_TO_CHECK_GENERATOR
DH_NOT_SUITABLE_GENERATOR
RSA_PKCS1_PADDING
RSA_SSLV23_PADDING
RSA_NO_PADDING
RSA_PKCS1_OAEP_PADDING
RSA_X931_PADDING
RSA_PKCS1_PSS_PADDING
RSA_PSS_SALTLEN_DIGESTSets the salt length for RSA_PKCS1_PSS_PADDING to the digest size when signing or verifying.
RSA_PSS_SALTLEN_MAX_SIGNSets the salt length for RSA_PKCS1_PSS_PADDING to the maximum permissible value when signing data.
RSA_PSS_SALTLEN_AUTOCauses the salt length for RSA_PKCS1_PSS_PADDING to be determined automatically when verifying a signature.
POINT_CONVERSION_COMPRESSED
POINT_CONVERSION_UNCOMPRESSED
POINT_CONVERSION_HYBRID

Node.js crypto constants

ConstantDescription
defaultCoreCipherListSpecifies the built-in default cipher list used by Node.js.
defaultCipherListSpecifies the active default cipher list used by the current Node.js process.
Reading Time
85 min read
Added In
v0.3.6
View As
  1. JSON
  2. MD
Contribute
Edit this page
Table of Contents
  1. Determining if crypto support is unavailable
  2. Certificate
  3. Certificate.exportChallenge
  4. Certificate.exportPublicKey
  5. Certificate.verifySpkac
  6. Legacy API
  7. Cipheriv
  8. cipher.final
  9. cipher.getAuthTag
  10. cipher.setAAD
  11. cipher.setAutoPadding
  12. cipher.update
  13. Decipheriv
  14. decipher.final
  15. decipher.setAAD
  16. decipher.setAuthTag
  17. decipher.setAutoPadding
  18. decipher.update
  19. DiffieHellman
  20. diffieHellman.computeSecret
  21. diffieHellman.generateKeys
  22. diffieHellman.getGenerator
  23. diffieHellman.getPrime
  24. diffieHellman.getPrivateKey
  25. diffieHellman.getPublicKey
  26. diffieHellman.setPrivateKey
  27. diffieHellman.setPublicKey
  28. diffieHellman.verifyError
  29. DiffieHellmanGroup
  30. ECDH
  31. ECDH.convertKey
  32. ecdh.computeSecret
  33. ecdh.generateKeys
  34. ecdh.getPrivateKey
  35. ecdh.getPublicKey
  36. ecdh.setPrivateKey
  37. ecdh.setPublicKey
  38. Hash
  39. hash.copy
  40. hash.digest
  41. hash.update
  42. Hmac
  43. hmac.digest
  44. hmac.update
  45. KeyObject
  46. KeyObject.from
  47. keyObject.asymmetricKeyDetails
  48. keyObject.asymmetricKeyType
  49. keyObject.equals
  50. keyObject.export
  51. keyObject.symmetricKeySize
  52. keyObject.toCryptoKey
  53. keyObject.type
  54. Sign
  55. sign
  56. sign.update
  57. Verify
  58. verify.update
  59. verify
  60. X509Certificate
  61. X509Certificate Constructor
  62. x509.ca
  63. x509.checkEmail
  64. x509.checkHost
  65. x509.checkIP
  66. x509.checkIssued
  67. x509.checkPrivateKey
  68. x509.extKeyUsage
  69. x509.fingerprint
  70. x509.fingerprint256
  71. x509.fingerprint512
  72. x509.infoAccess
  73. x509.issuer
  74. x509.issuerCertificate
  75. x509.publicKey
  76. x509.raw
  77. x509.serialNumber
  78. x509.subject
  79. x509.subjectAltName
  80. x509.toJSON
  81. x509.toLegacyObject
  82. x509.toString
  83. x509.validFrom
  84. x509.validFromDate
  85. x509.validTo
  86. x509.validToDate
  87. x509.verify
  88. crypto module methods and properties
  89. crypto.checkPrime
  90. crypto.checkPrimeSync
  91. crypto.constants
  92. crypto.createCipheriv
  93. crypto.createDecipheriv
  94. crypto.createDiffieHellman
  95. crypto.createDiffieHellman
  96. crypto.createDiffieHellmanGroup
  97. crypto.createECDH
  98. crypto.createHash
  99. crypto.createHmac
  100. crypto.createPrivateKey
  101. crypto.createPublicKey
  102. crypto.createSecretKey
  103. crypto.createSign
  104. crypto.createVerify
  105. crypto.diffieHellman
  106. crypto.fips
  107. crypto.generateKey
  108. crypto.generateKeyPair
  109. crypto.generateKeyPairSync
  110. crypto.generateKeySync
  111. crypto.generatePrime
  112. crypto.generatePrimeSync
  113. crypto.getCipherInfo
  114. crypto.getCiphers
  115. crypto.getCurves
  116. crypto.getDiffieHellman
  117. crypto.getFips
  118. crypto.getHashes
  119. crypto.getRandomValues
  120. crypto.hash
  121. crypto.hkdf
  122. crypto.hkdfSync
  123. crypto.pbkdf2
  124. crypto.pbkdf2Sync
  125. crypto.privateDecrypt
  126. crypto.privateEncrypt
  127. crypto.publicDecrypt
  128. crypto.publicEncrypt
  129. crypto.randomBytes
  130. crypto.randomFill
  131. crypto.randomFillSync
  132. crypto.randomInt
  133. crypto.randomUUID
  134. crypto.scrypt
  135. crypto.scryptSync
  136. crypto.secureHeapUsed
  137. crypto.setEngine
  138. crypto.setFips
  139. crypto.sign
  140. crypto.subtle
  141. crypto.timingSafeEqual
  142. crypto.verify
  143. crypto.webcrypto
  144. Notes
  145. Using strings as inputs to cryptographic APIs
  146. Legacy streams API (prior to Node.js 0.10)
  147. Support for weak or compromised algorithms
  148. CCM mode
  149. FIPS mode
  150. Crypto constants
  151. OpenSSL options
  152. OpenSSL engine constants
  153. Other OpenSSL constants
  154. Node.js crypto constants